Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia

Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and postsynaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to rebalance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control.

[1]  S. Akbarian,et al.  GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. , 1995, Cerebral cortex.

[2]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[3]  Jong H. Yoon,et al.  GABA Concentration Is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression , 2010, The Journal of Neuroscience.

[4]  Wei Zhang,et al.  Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia , 2009, Neuropsychopharmacology.

[5]  T. Woo,et al.  Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. , 2004, Archives of general psychiatry.

[6]  Burton S. Rosner,et al.  Neuropharmacology , 1958, Nature.

[7]  P. Somogyi,et al.  Differential synaptic localization of two major y-aminobutyric acid type A receptor a subunits on hippocampal pyramidal cells , 1996 .

[8]  Dennis Velakoulis,et al.  Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. , 2009, Archives of general psychiatry.

[9]  Yogesh K. Dwivedi,et al.  A decrease of reelin expression as a putative vulnerability factor in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Tamás,et al.  Differential distribution of KCC2 along the axo‐somato‐dendritic axis of hippocampal principal cells , 2010, The European journal of neuroscience.

[11]  Jim van Os,et al.  The environment and schizophrenia , 2010, Nature.

[12]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[13]  S. Floresco,et al.  Reducing Prefrontal Gamma-Aminobutyric Acid Activity Induces Cognitive, Behavioral, and Dopaminergic Abnormalities That Resemble Schizophrenia , 2011, Biological Psychiatry.

[14]  Ken Mackie,et al.  Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[15]  D. Lewis,et al.  Neuroplasticity of Neocortical Circuits in Schizophrenia , 2008, Neuropsychopharmacology.

[16]  B H Gähwiler,et al.  Mechanism of mu‐opioid receptor‐mediated presynaptic inhibition in the rat hippocampus in vitro. , 1993, The Journal of physiology.

[17]  C. Chavkin,et al.  Opioids activate both an inward rectifier and a novel voltage-gated potassium conductance in the hippocampal formation , 1991, Neuron.

[18]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Yuste,et al.  The Enigmatic Function of Chandelier Cells , 2010, Front. Neurosci..

[20]  Dost Öngür,et al.  Elevated Gamma-Aminobutyric Acid Levels in Chronic Schizophrenia , 2010, Biological Psychiatry.

[21]  M. Roesch,et al.  More Is Less: A Disinhibited Prefrontal Cortex Impairs Cognitive Flexibility , 2010, The Journal of Neuroscience.

[22]  D. Peckys,et al.  Prodynorphin and kappa opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. , 2001, Brain research bulletin.

[23]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[24]  Anthony A Grace,et al.  A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscillatory Activity in an Animal Model of Schizophrenia , 2009, The Journal of Neuroscience.

[25]  R. Olsen,et al.  GABAA receptors: Subtypes provide diversity of function and pharmacology , 2009, Neuropharmacology.

[26]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[27]  M. Schäfer,et al.  Homeostatic Scaling of Vesicular Glutamate and GABA Transporter Expression in Rat Neocortical Circuits , 2005, The Journal of Neuroscience.

[28]  David A Lewis,et al.  Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. , 2005, The American journal of psychiatry.

[29]  Mark E. Williams,et al.  Glutamate decarboxylase65-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain , 2000, Journal of Chemical Neuroanatomy.

[30]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[31]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[32]  A. Sampson,et al.  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. , 2011, The American journal of psychiatry.

[33]  R. Straub,et al.  Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia , 2011, The Journal of Neuroscience.

[34]  R. Sweet,et al.  Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons. , 2011, Cerebral cortex.

[35]  Erin Walker,et al.  Cortical opioid markers in schizophrenia and across postnatal development. , 2012, Cerebral cortex.

[36]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[37]  J. Pierri,et al.  Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. , 2001, The American journal of psychiatry.

[38]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[39]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[40]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Lewis,et al.  Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia , 2010, Current psychiatry reports.

[43]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[44]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[45]  C. Drake,et al.  Mu opioid receptors are in discrete hippocampal interneuron subpopulations , 2002, Hippocampus.

[46]  C. Lupica Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Lewis,et al.  Parvalbumin‐immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses , 1999, The Journal of comparative neurology.

[48]  C. Beasley,et al.  Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins , 2002, Biological Psychiatry.

[49]  Sarah E. Forster,et al.  Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. , 2008, The American journal of psychiatry.

[50]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[52]  David A. Lewis,et al.  Altered Cortical CDC42 Signaling Pathways in Schizophrenia: Implications for Dendritic Spine Deficits , 2010, Biological Psychiatry.

[53]  Sze Py L-Glutamate decarboxylase. , 1979 .

[54]  Y. Goda,et al.  Unraveling Mechanisms of Homeostatic Synaptic Plasticity , 2010, Neuron.

[55]  A. Sampson,et al.  Pyramidal cell size reduction in schizophrenia: evidence for involvement of auditory feedforward circuits , 2004, Biological Psychiatry.

[56]  T. Hashimoto,et al.  Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia , 2006, Molecular Psychiatry.

[57]  John Suckling,et al.  For personal use. Only reproduce with permission from The Lancet Publishing Group. Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy , 2002 .

[58]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[59]  Michael F. Green,et al.  Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. , 2006, The Journal of clinical psychiatry.

[60]  J. Glausier,et al.  Selective Pyramidal Cell Reduction of GABAA Receptor α1 Subunit Messenger RNA Expression in Schizophrenia , 2011, Neuropsychopharmacology.

[61]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[62]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[63]  S. Akbarian MOLECULAR DETERMINANTS OF DYSREGULATED GABAERGIC GENE EXPRESSION IN THE PREFRONTAL CORTEX OF SUBJECTS WITH SCHIZOPHRENIA , 2010, Schizophrenia Research.

[64]  P S Goldman-Rakic,et al.  Synaptogenesis in the prefrontal cortex of rhesus monkeys. , 1994, Cerebral cortex.

[65]  John Seibyl,et al.  Probing GABA Receptor Function in Schizophrenia with Iomazenil , 2011, Neuropsychopharmacology.

[66]  M. Webster,et al.  Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. , 2010, The American journal of psychiatry.

[67]  Mark C. W. van Rossum,et al.  Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABAA Receptors Clustered at Neocortical Synapses , 2002, The Journal of Neuroscience.

[68]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[69]  K. Mirnics,et al.  Molecular markers distinguishing supragranular and infragranular layers in the human prefrontal cortex , 2007, The European journal of neuroscience.

[70]  A. Arnsten Stress signalling pathways that impair prefrontal cortex structure and function , 2009, Nature Reviews Neuroscience.

[71]  David A Lewis,et al.  Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. , 2008, The American journal of psychiatry.

[72]  S. Schulz,et al.  Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. , 2004, The Journal of comparative neurology.

[73]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[74]  B. Alger,et al.  Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus , 2009, The Journal of Neuroscience.

[75]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[76]  Jon W. Johnson,et al.  Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia. , 2009, The American journal of psychiatry.

[77]  Cameron S Carter,et al.  Gamma Oscillatory Power is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia , 2010, Neuropsychopharmacology.

[78]  M. Minzenberg,et al.  Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. , 2009, Archives of general psychiatry.

[79]  R. Yoshimura,et al.  Associations between plasma levels of 3‐methoxy‐4‐hydroxyphenylglycol (MHPG) and negative symptoms or cognitive impairments in early‐stage schizophrenia , 2009, Human psychopharmacology.

[80]  Douglas L Rothman,et al.  Decrease in GABA synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD67 protein , 2001, Brain Research.

[81]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[82]  Mark Farrant,et al.  The cellular, molecular and ionic basis of GABA(A) receptor signalling. , 2007, Progress in brain research.

[83]  R. Cho,et al.  Tiagabine Increases [11C]flumazenil Binding in Cortical Brain Regions in Healthy Control Subjects , 2009, Neuropsychopharmacology.

[84]  H. M. Morris,et al.  Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia , 2008, Molecular Psychiatry.

[85]  P. Tooney,et al.  Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[86]  T. Woo,et al.  Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. , 1997, The American journal of psychiatry.

[87]  Michael F. Green,et al.  Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. , 2011, The American journal of psychiatry.

[88]  T. Kaneko,et al.  Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia , 2009, BMC psychiatry.

[89]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[90]  R. Yoshimura,et al.  Reduction of brain γ-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study , 2009, Schizophrenia Research.

[91]  T. Hashimoto,et al.  Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. , 2011, Cerebral cortex.

[92]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[93]  David A Lewis,et al.  Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia , 2011, The Journal of Neuroscience.

[94]  Peter Wenner,et al.  Sensing and expressing homeostatic synaptic plasticity , 2007, Trends in Neurosciences.

[95]  S. Schulz,et al.  Neuronal types expressing μ‐ and δ‐opioid receptor mRNA in the rat hippocampal formation , 2004 .

[96]  Richie Poulton,et al.  Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. , 2010, The American journal of psychiatry.

[97]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[98]  S. Lawrie,et al.  Longitudinal Volume Reductions in People at High Genetic Risk of Schizophrenia as They Develop Psychosis , 2011, Biological Psychiatry.

[99]  T. Yagi,et al.  Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. , 1996, Biochemical and biophysical research communications.

[100]  M. Webster,et al.  Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. , 2009, Journal of psychiatric research.

[101]  B. Alger,et al.  Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others , 2008, Neuropharmacology.

[102]  M. Huntsman,et al.  Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. , 1994, Cerebral cortex.

[103]  I. Soltesz,et al.  Cell type–specific gating of perisomatic inhibition by cholecystokinin , 2007, Nature Neuroscience.

[104]  Norbert Hájos,et al.  Network mechanisms of gamma oscillations in the CA3 region of the hippocampus , 2009, Neural Networks.

[105]  Cameron S Carter,et al.  Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning , 2011, Neuropsychopharmacology.

[106]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[107]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[108]  M. Webster,et al.  Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. , 2010, Journal of psychiatric research.

[109]  W. Carlezon,et al.  Schizophrenia-Like Attentional Deficits Following Blockade of Prefrontal Cortex GABAA Receptors , 2011, Neuropsychopharmacology.

[110]  T. Sawaguchi,et al.  Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys , 2004, Experimental Brain Research.

[111]  Lindsey L. Glickfeld,et al.  Complementary Modulation of Somatic Inhibition by Opioids and Cannabinoids , 2008, The Journal of Neuroscience.

[112]  F. Benes,et al.  Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects , 1996, Neuroscience.

[113]  W. Fenton,et al.  How should DSM-V criteria for schizophrenia include cognitive impairment? , 2007, Schizophrenia bulletin.

[114]  D. Arion,et al.  Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. , 2011, Archives of general psychiatry.

[115]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[116]  Takanori Hashimoto,et al.  Protracted Developmental Trajectories of GABA A Receptor α1 and α2 Subunit Expression in Primate Prefrontal Cortex , 2009, Biological Psychiatry.

[117]  G. Knott,et al.  GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex , 2007, Neuron.

[118]  Goldman-Rakic Cellular Basis of Working Memory Review , 2022 .

[119]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[120]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[121]  S. Eggan,et al.  Postnatal development of pre‐ and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex , 2003, The Journal of comparative neurology.

[122]  A. Sampson,et al.  Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. , 2001, Archives of general psychiatry.

[123]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.