Deconvolution and Restoration of Optical Endomicroscopy Images

Optical endomicroscopy (OEM) is an emerging technology platform with preclinical and clinical imaging applications. Pulmonary OEM via fibre bundles has the potential to provide in vivo, in situ molecular signatures of disease such as infection and inflammation. However, enhancing the quality of data acquired by this technique for better visualization and subsequent analysis remains a challenging problem. Cross coupling between fiber cores and sparse sampling by imaging fiber bundles are the main reasons for image degradation, and poor detection performance (i.e., inflammation, bacteria, etc.). In this paper, we address the problem of deconvolution and restoration of OEM data. We propose a hierarchical Bayesian model to solve this problem and compare three estimation algorithms to exploit the resulting joint posterior distribution. The first method is based on Markov chain Monte Carlo methods, however, it exhibits a relatively long computational time. The second and third algorithms deal with this issue and are based on a variational Bayes approach and an alternating direction method of multipliers algorithm, respectively. Results on both synthetic and real datasets illustrate the effectiveness of the proposed methods for restoration of OEM images.

[1]  A. Akram,et al.  A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue† †Electronic supplementary information (ESI) available: Experimental details and Fig. S1–S5. See DOI: 10.1039/c5sc00960j , 2015, Chemical science.

[2]  Aggelos K. Katsaggelos,et al.  Variational Bayesian causal connectivity analysis for fMRI , 2014, Front. Neuroinform..

[3]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[4]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[5]  Mário A. T. Figueiredo,et al.  Fast frame-based image deconvolution using variable splitting and constrained optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[6]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[7]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Super Resolution , 2011, IEEE Transactions on Image Processing.

[8]  Steve McLaughlin,et al.  Robust Markov Random Field outlier detection and removal in subsampled images , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[9]  Josiane Zerubia,et al.  Blind deconvolution for thin-layered confocal imaging. , 2009, Applied optics.

[10]  D. McAuley,et al.  Novel pulmonary biomarkers in the diagnosis of VAP , 2010, Thorax.

[11]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[12]  Chris Xu,et al.  Numerical analysis of light propagation in image fibers or coherent fiber bundles. , 2007, Optics express.

[13]  Mark B. Cannell,et al.  Image Enhancement by Deconvolution , 2006 .

[14]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[15]  Xu Zhou,et al.  Fast iteratively reweighted least squares for lp regularized image deconvolution and reconstruction , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[16]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[17]  Xu Zhou,et al.  Variational Bayesian Blind Image Deconvolution: A review , 2015, Digit. Signal Process..

[18]  M. Hurn,et al.  Three-dimensional Bayesian image analysis and confocal microscopy , 2011 .

[19]  Urs Utzinger,et al.  Spectral background and transmission characteristics of fiber optic imaging bundles. , 2008, Applied optics.

[20]  Harri Lappalainen,et al.  Ensemble learning for independent component analysis , 1999 .

[21]  Kerrianne Harrington,et al.  Quantitative characterization of endoscopic imaging fibers. , 2017, Optics express.

[22]  Mauricio Valencia,et al.  Ventilator-associated pneumonia , 2009, Current opinion in critical care.

[23]  Nicholas Ayache,et al.  Towards Optical Biopsies with an Integrated Fibered Confocal Fluorescence Microscope , 2004, MICCAI.

[24]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[25]  Yoann Altmann,et al.  Characterization and modelling of inter-core coupling in coherent fiber bundles. , 2017, Optics express.

[26]  R. Richards-Kortum,et al.  A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging , 2010, PloS one.

[27]  T. Schaberg,et al.  [Bronchoscopic diagnosis of pneumonia]. , 1992, Zeitschrift fur arztliche Fortbildung.

[28]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[29]  R. Horgan,et al.  Statistical Field Theory , 2014 .

[30]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[31]  Jan Flusser,et al.  Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..

[32]  Ari Pakman,et al.  Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians , 2012, 1208.4118.

[33]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[34]  Rafael Molina,et al.  Blind Image Deconvolution: Problem formulation and existing approaches , 2007 .

[35]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[36]  Yen-Wei Chen,et al.  Ensemble learning for independent component analysis , 2006, Pattern Recognit..

[37]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[38]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[39]  Rebecca Richards-Kortum,et al.  High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging , 2011, Journal of visualized experiments : JoVE.

[40]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[41]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[42]  Tom Vercauteren,et al.  Processing and mosaicing of fibered confocal images , 2006 .

[43]  Bing Yu,et al.  Smartphone microendoscopy for high resolution fluorescence imaging , 2016 .

[44]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[45]  Christopher Jennison,et al.  Statistical image analysis for a confocal microscopy two‐dimensional section of cartilage growth , 2004 .

[46]  José M. Bioucas-Dias,et al.  Non-cyclic deconvolution using an augmented lagrangian method , 2011, 2011 IEEE EUROCON - International Conference on Computer as a Tool.

[47]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[48]  Nikola Krstajic,et al.  Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue , 2016, Journal of biomedical optics.

[49]  Rafael Molina,et al.  Blind restoration of blurred photographs via AR modelling and MCMC , 2008, 2008 15th IEEE International Conference on Image Processing.

[50]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Blind Deconvolution Using a Total Variation Prior , 2009, IEEE Transactions on Image Processing.

[51]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[52]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[53]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[54]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[55]  Aggelos K. Katsaggelos,et al.  Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation , 2006, IEEE Transactions on Image Processing.

[56]  V. Šmídl,et al.  The Variational Bayes Method in Signal Processing , 2005 .

[57]  Jean-Yves Tourneret,et al.  Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes , 2012, IEEE Transactions on Signal Processing.

[58]  Alexander Wong,et al.  Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates , 2015, Scientific reports.