Discrete-Time Linear Quadratic Optimal Control via Double Generating Functions

[1]  D. Mayne,et al.  On the discrete time matrix Riccati equation of optimal control , 1970 .

[2]  D. Scheeres,et al.  Solving Relative Two-Point Boundary Value Problems: Spacecraft Formation Flight Transfers Application , 2004 .

[3]  J. W. Humberston Classical mechanics , 1980, Nature.

[4]  Kenji Fujimoto,et al.  On-demand optimal gait generation for a compass biped robot based on the double generating function method , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  Vladimír Kucera,et al.  The discrete Riccati equation of optimal control , 1972, Kybernetika.

[7]  Daniel J. Scheeres,et al.  Determination of optimal feedback terminal controllers for general boundary conditions using generating functions , 2006, Autom..

[8]  Kenji Fujimoto,et al.  Optimal trajectory generation for nonlinear systems based on double generating functions , 2013, 2013 American Control Conference.

[9]  Taeyoung Lee,et al.  Discrete-time optimal feedback control via Hamilton-Jacobi theory with an application to hybrid systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[10]  Ian R. Petersen,et al.  Monotonicity and stabilizability- properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures and counterexamples☆ , 1985 .

[11]  Tomoki Ohsawa,et al.  Discrete Hamilton-Jacobi Theory , 2009, SIAM J. Control. Optim..