A posteriori error estimator and error control for contact problems
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.
[2] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[3] D. W. Kelly,et al. Procedures for residual equilibration and local error estimation in the finite element method , 1989 .
[4] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[5] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[7] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[8] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[9] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[10] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[11] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[12] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[13] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems , 1999 .
[14] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[15] Serge Nicaise,et al. A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.
[16] Faker Ben Belgacem,et al. Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..
[17] Patrice Coorevits,et al. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..
[18] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[19] H. Blum,et al. An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .
[20] I. Babuska,et al. The finite element method and its reliability , 2001 .
[21] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[22] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[23] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[24] Weimin Han,et al. A posteriori error analysis for finite element solutions of a frictional contact problem , 2006 .
[25] Dietrich Braess,et al. A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.
[26] Peter Wriggers,et al. Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..
[27] Erwin Stein,et al. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .
[28] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[29] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[30] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[31] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[32] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[33] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[34] Barbara I. Wohlmuth. An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..
[35] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[36] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[37] Weimin Han,et al. A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind , 2005 .
[38] Weimin Han,et al. A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .
[39] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[40] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[41] Faker Ben Belgacem,et al. Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..
[42] B. I. WOHLMUTH,et al. AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .
[43] Peter Wriggers,et al. Different a posteriori error estimators and indicators for contact problems , 1998 .
[44] Patrick Hild,et al. Quadratic finite element methods for unilateral contact problems , 2002 .
[45] Erwin Stein,et al. Equilibrium method for postprocessing and error estimation in the finite element method , 2006 .
[46] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[47] Carsten Carstensen,et al. Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.
[48] Andreas Veeser. On a posteriori error estimation for constant obstacle problems , 2001 .
[49] Carsten Carstensen,et al. A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.
[50] Gustavo C. Buscaglia,et al. An adaptive finite element approach for frictionless contact problems , 2001 .
[51] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[52] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[53] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[54] D. Braess,et al. The Mortar element method revisited – What are the right norms ? , 2001 .
[55] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[56] J. T. Oden,et al. A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .
[57] S. Ohnimus,et al. Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems , 1999 .
[58] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[59] Yanqiu Wang,et al. Preconditioning for the mixed formulation of linear plane elasticity , 2005 .
[60] Barbara Wohlmuth. A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .
[61] Patrick Hild,et al. Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .
[62] Ralf Kornhuber,et al. Adaptive finite element methods for variational inequalities , 1993 .
[63] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[64] Carsten Carstensen,et al. A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations , 2005, Numerische Mathematik.