A posteriori error estimator and error control for contact problems

In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H(div)-conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. More- over, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.

[1]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.

[2]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[3]  D. W. Kelly,et al.  Procedures for residual equilibration and local error estimation in the finite element method , 1989 .

[4]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[5]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[6]  Adaptive Finite Element Discretization in Elasticity and Elastoplasticity by Global and Lokal Error Estimators using Local Neumann‐Problems , 1999 .

[7]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[8]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[9]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[10]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[11]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[12]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[13]  R. Verfürth A review of a posteriori error estimation techniques for elasticity problems , 1999 .

[14]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[15]  Serge Nicaise,et al.  A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.

[16]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[17]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[18]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[19]  H. Blum,et al.  An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .

[20]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[21]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[22]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[23]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[24]  Weimin Han,et al.  A posteriori error analysis for finite element solutions of a frictional contact problem , 2006 .

[25]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[26]  Peter Wriggers,et al.  Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..

[27]  Erwin Stein,et al.  A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .

[28]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[29]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[30]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[31]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[32]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[33]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[34]  Barbara I. Wohlmuth An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..

[35]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[36]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[37]  Weimin Han,et al.  A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind , 2005 .

[38]  Weimin Han,et al.  A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .

[39]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[40]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[41]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[42]  B. I. WOHLMUTH,et al.  AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .

[43]  Peter Wriggers,et al.  Different a posteriori error estimators and indicators for contact problems , 1998 .

[44]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[45]  Erwin Stein,et al.  Equilibrium method for postprocessing and error estimation in the finite element method , 2006 .

[46]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[47]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[48]  Andreas Veeser On a posteriori error estimation for constant obstacle problems , 2001 .

[49]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[50]  Gustavo C. Buscaglia,et al.  An adaptive finite element approach for frictionless contact problems , 2001 .

[51]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..

[52]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[53]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[54]  D. Braess,et al.  The Mortar element method revisited – What are the right norms ? , 2001 .

[55]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[56]  J. T. Oden,et al.  A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .

[57]  S. Ohnimus,et al.  Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems , 1999 .

[58]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[59]  Yanqiu Wang,et al.  Preconditioning for the mixed formulation of linear plane elasticity , 2005 .

[60]  Barbara Wohlmuth A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .

[61]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[62]  Ralf Kornhuber,et al.  Adaptive finite element methods for variational inequalities , 1993 .

[63]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[64]  Carsten Carstensen,et al.  A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations , 2005, Numerische Mathematik.