Reflection in the systemic arterial system: effects of aortic and carotid occlusion.

Experiments were performed in seven closed-chest anaesthetized male dogs to determine the role of pulse wave reflection in the pattern of flow and pressure in the ascending aorta. Ten days after implantation of an electromagnetic flow transducer around the ascending aorta a balloon catheter was placed in the descending aorta via the femoral arteries. At the same time a tip manometer was introduced into the ascending aorta. Aortic occlusions at three different sites caused pressure pulses with secondary systolic rises and flow pulses with biphasic deceleration. Secondary rises occurred 45 +/- 9.0 ms after the initial pressure rise for high aortic occlusion; this time was 75 +/- 8.5 ms for occlusion at the level of the diaphragm and 114 +/- 16.5 ms for occlusion near the level of the renal arteries. These times approximate the times in which the pulse travels from the tip manometer to the inflated balloons and back. Forward and reflected pressure and flow waves were calculated from reflection coefficients. Aortic occlusion caused larger reflected waves and the recorded wave forms were caused by the summation of forward and backward waves, the latter contributing the secondary pressure rise and the increased flow deceleration. Occlusion of both carotid arteries showed no specific reflection site but reflected waves were larger. This increased reflection can probably be explained as the result of greater total reflection from distributed sites under increased peripheral resistance.