The dual minimum distance of arbitrary dimensional algebraic--geometric codes

Abstract In this article, the minimum distance of the dual C ⊥ of a functional code C on an arbitrary-dimensional variety X over a finite field F q is studied. The approach is based on problems a la Cayley–Bacharach and consists in describing the minimal configurations of points on X which fail to impose independent conditions on forms of some degree m . If X is a curve, the result improves in some situations the well-known Goppa designed distance .

[1]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[2]  José Felipe Voloch,et al.  ALGEBRAIC GEOMETRIC CODES ON SURFACES , 2009 .

[3]  Joe Harris,et al.  Cayley-Bacharach theorems and conjectures , 1996 .

[4]  A. N. Paršin ON THE ARITHMETIC OF TWO-DIMENSIONAL SCHEMES. I. DISTRIBUTIONS AND RESIDUES , 1976 .

[5]  Karen E. Smith,et al.  Rational And Nearly Rational Varieties , 2004 .

[6]  H. Swinnerton-Dyer The zeta function of a cubic surface over a finite field , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Yves Aubry,et al.  Algebraic geometric codes on surfaces , 1992 .

[8]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[9]  Alain Couvreur Residus de 2-formes differentielles sur les surfaces algebriques et applications aux codes correcteurs d'erreurs , 2009, ArXiv.

[10]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[11]  Yu. I. Manin,et al.  Linear codes and modular curves , 1985 .

[12]  Alain Couvreur,et al.  Sums of residues on algebraic surfaces and application to coding theory , 2008, ArXiv.

[13]  David Mumford,et al.  Lectures on curves on an algebraic surface , 1966 .

[14]  Yves Aubry,et al.  Reed-Muller codes associated to projective algebraic varieties , 1992 .

[15]  T. Willmore Algebraic Geometry , 1973, Nature.

[16]  Y. Aubry,et al.  Arithmetic, Geometry and Coding Theory , 2005 .

[17]  John B. Little,et al.  Algebraic geometry codes from higher dimensional varieties , 2008, ArXiv.

[18]  Alain Couvreur,et al.  Differential approach for the study of duals of algebraic-geometric codes on surfaces , 2009, ArXiv.

[19]  Harald Niederreiter,et al.  Series on Coding Theory and Cryptology , 2007 .

[20]  Marcos Zarzar,et al.  Error-correcting codes on low rank surfaces , 2007, Finite Fields Their Appl..

[21]  Anders Bjært Sørensen Projective Reed-Muller codes , 1991, IEEE Trans. Inf. Theory.

[22]  Ruud Pellikaan,et al.  Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.

[23]  G. Lachaud Number of points of plane sections and linear codes defined on algebraic varieties , 1996 .