Tokamak free-boundary plasma equilibrium computation using finite elements of class C0 and C1 within a mortar element approach
暂无分享,去创建一个
[1] Houssem Haddar,et al. Artificial boundary conditions for axisymmetric eddy current probe problems , 2014, Comput. Math. Appl..
[2] J. Blum,et al. Existence and control of plasma equilibrium in a Tokamak , 1986 .
[3] V. Shafranov. On Magnetohydrodynamical Equilibrium Configurations , 1958 .
[4] Francesca Rapetti,et al. Basics and some applications of the mortar element method , 2005 .
[5] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[6] R. Lüst,et al. Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .
[7] F. Hinton,et al. Theory of plasma transport in toroidal confinement systems , 1976 .
[8] T. O’Neil. Geometric Measure Theory , 2002 .
[9] Blaise Faugeras,et al. FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains , 2017, J. Comput. Phys..
[10] Sylvain Brémond,et al. Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .
[11] Roger Temam,et al. Remarks on a free Boundary Value Problem Arising in Plasma Physics , 1977 .
[12] A. Buffa,et al. A Sliding Mesh-Mortar Method for Two Dimensional Eddy Currents Model for Electric Engines , 1999 .
[13] Stephen C. Jardin,et al. A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .
[14] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[15] Jet Efda Contributors,et al. The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results , 2014 .
[16] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[17] Harold Grad,et al. HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .
[18] Kersten Schmidt,et al. A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces , 2017, SIAM J. Numer. Anal..
[19] Blaise Faugeras,et al. An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code , 2020, Fusion Engineering and Design.
[20] Harold Grad,et al. Classical Diffusion in a Tokomak , 1970 .
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] H. Brezis,et al. On a free boundary problem arising in plasma physics , 1980 .
[23] J. I. Ramos,et al. Numerical simulation and optimal control in plasma physics with applications to Tokamaks , 1990 .
[24] Francesca Rapetti,et al. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries , 2017, J. Comput. Phys..