Tokamak free-boundary plasma equilibrium computation using finite elements of class C0 and C1 within a mortar element approach

[1]  Houssem Haddar,et al.  Artificial boundary conditions for axisymmetric eddy current probe problems , 2014, Comput. Math. Appl..

[2]  J. Blum,et al.  Existence and control of plasma equilibrium in a Tokamak , 1986 .

[3]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[4]  Francesca Rapetti,et al.  Basics and some applications of the mortar element method , 2005 .

[5]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[6]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[7]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[8]  T. O’Neil Geometric Measure Theory , 2002 .

[9]  Blaise Faugeras,et al.  FEM-BEM coupling methods for Tokamak plasma axisymmetric free-boundary equilibrium computations in unbounded domains , 2017, J. Comput. Phys..

[10]  Sylvain Brémond,et al.  Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .

[11]  Roger Temam,et al.  Remarks on a free Boundary Value Problem Arising in Plasma Physics , 1977 .

[12]  A. Buffa,et al.  A Sliding Mesh-Mortar Method for Two Dimensional Eddy Currents Model for Electric Engines , 1999 .

[13]  Stephen C. Jardin,et al.  A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .

[14]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[15]  Jet Efda Contributors,et al.  The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results , 2014 .

[16]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[17]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[18]  Kersten Schmidt,et al.  A High Order Method for the Approximation of Integrals Over Implicitly Defined Hypersurfaces , 2017, SIAM J. Numer. Anal..

[19]  Blaise Faugeras,et al.  An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code , 2020, Fusion Engineering and Design.

[20]  Harold Grad,et al.  Classical Diffusion in a Tokomak , 1970 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  H. Brezis,et al.  On a free boundary problem arising in plasma physics , 1980 .

[23]  J. I. Ramos,et al.  Numerical simulation and optimal control in plasma physics with applications to Tokamaks , 1990 .

[24]  Francesca Rapetti,et al.  A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries , 2017, J. Comput. Phys..