Engineering metal oxidation using epitaxial strain.

[1]  A. Georges,et al.  Interfacial charge transfer and persistent metallicity of ultrathin SrIrO3/SrRuO3 heterostructures , 2022, Science advances.

[2]  Zi-kui Liu,et al.  Searching for a route to synthesize in situ epitaxial Pr2Ir2O7 thin films with thermodynamic methods , 2021, npj Computational Materials.

[3]  J. Yue,et al.  Novel synthesis approach for “stubborn” metals and metal oxides , 2021, Proceedings of the National Academy of Sciences.

[4]  K. Mkhoyan,et al.  Solid-source metal–organic molecular beam epitaxy of epitaxial RuO2 , 2021, APL Materials.

[5]  K. Mkhoyan,et al.  Direct observation and consequences of dopant segregation inside and outside dislocation cores in perovskite BaSnO3 , 2021, 2103.03982.

[6]  R. James,et al.  Strain Relaxation via Phase Transformation in High-Mobility SrSnO3 Films , 2021 .

[7]  L. Kourkoutis,et al.  Strain-stabilized superconductivity , 2020, Nature communications.

[8]  D. Muller,et al.  Effects of Anisotropic Strain on Spin-Orbit Torque Produced by the Dirac Nodal Line Semimetal IrO2. , 2020, ACS applied materials & interfaces.

[9]  W. Kim,et al.  Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films , 2020, Science Advances.

[10]  M. Schreck,et al.  Kinetics of the Thermal Oxidation of Ir(100) Towards IrO2 Studied by Ambient-pressure X-ray Photoelectron Spectroscopy. , 2020, The journal of physical chemistry letters.

[11]  Hiroshi Sawada,et al.  Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films , 2019, APL Materials.

[12]  J. Sinova,et al.  Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets , 2019, Science Advances.

[13]  H. Over,et al.  Template-Assisted Growth of Ultrathin Single-Crystalline IrO2(110) Films on RuO2(110)/Ru(0001) and Its Thermal Stability , 2018, The Journal of Physical Chemistry C.

[14]  L. Kourkoutis,et al.  Demystifying the growth of superconducting Sr2RuO4 thin films , 2018, APL Materials.

[15]  B. Rodríguez-González,et al.  Epitaxial stabilization of pulsed laser deposited Srn+1IrnO3n+1 thin films: Entangled effect of growth dynamics and strain , 2017, APL Materials.

[16]  J. Frenken,et al.  Observing the oxidation of platinum , 2017, Nature Communications.

[17]  D. Morgan,et al.  The X‐ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited , 2017 .

[18]  R. Takahashi,et al.  Microstructure analysis of IrO 2 thin films , 2017 .

[19]  Hyoungjeen Jeen,et al.  Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films , 2016, 1602.04280.

[20]  J. Dewey,et al.  Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3 , 2015 .

[21]  Timur K. Kim,et al.  Nearly free electrons in a 5d delafossite oxide metal , 2015, Science Advances.

[22]  B. J. Kim,et al.  Observation of a d-wave gap in electron-doped Sr2IrO4 , 2015, Nature Physics.

[23]  D. Schlom Perspective: Oxide molecular-beam epitaxy rocks! , 2015 .

[24]  Y. Shao-horn,et al.  Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.

[25]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[26]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[27]  T. Susaki,et al.  Enhanced Thermodynamic Stability of Epitaxial Oxide Thin Films , 2008 .

[28]  O. Gorbenko,et al.  Epitaxial Stabilization of Oxides in Thin Films , 2002 .

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  J. L. Gillson,et al.  Crystal growth, electrical resistivity and lattice parameters of RuO2 and IrO2 , 1971 .