Sub-60 °C atmospheric helium–water plasma jets: modes, electron heating and downstream reaction chemistry

For plasma treatment of many heat-labile materials (e.g. living tissues) that either are moist or contain a surface layer of liquid, it is desirable that the gas plasma is generated at atmospheric pressure for process convenience and with a gas temperature ideally no more than 60 °C for mitigating permanent damage to the integrity of the test material. This implies that the liquid-containing plasma needs to be of low dissipated electrical energy and that plasma treatment should be based largely on non-equilibrium reaction chemistry. In this paper, a class of sub-60 °C atmospheric helium–water plasma jets is studied in terms of their main physiochemical properties. It is shown that there are five distinct modes appearing in the sequence of, with increasing voltage, the first chaotic mode, the plasma bullet mode, the second chaotic mode, the abnormal glow mode and the non-thermal arc mode. Its chaotic modes may be sustained over a wide range of water vapour concentrations (0–2500 ppm). Compared with other liquid-containing plasmas, the He–H2O plasma jet operated below its non-thermal arc mode has several distinct advantages, namely very low energy consumption (2–10 µJ per pulse), sub-60 °C gas temperature, electron-modulated production of He, N2, , O*, H and OH(A–X), and low ozone production (0.1–0.4 ppm). These results provide a first attempt at the landscape of the physiochemical characteristics in atmospheric He–H2O plasma jets.

[1]  R. Peters,et al.  EXPERIMENTAL THERMAL BURNS, ESPECIALLY THE MODERATE TEMPERATURE BURN , 1943 .

[2]  G. A. Dawson,et al.  A model for streamer propagation , 1965 .

[3]  V. Cardeñoso-Payo,et al.  Study of the effects of ion dynamics on Stark profiles of Balmer-α and -β lines using simulation techniques , 1987 .

[4]  J. Mullen On the atomic state distribution function in inductively coupled plasmas—II: The stage of local thermal equilibrium and its validity region , 1990 .

[5]  H. M. Jones,et al.  Pre‐breakdown currents in water and aqueous solutions and their influence on pulsed dielectric breakdown , 1995 .

[6]  G. Morfill,et al.  Melting dynamics of a plasma crystal , 1996, Nature.

[7]  van der J.J.A.M. Mullen,et al.  On the atomic state densities of plasmas produced by the “torche à injection axiale” , 1996 .

[8]  B. Sturtevant,et al.  In vitro study of the mechanical effects of shock-wave lithotripsy. , 1997, Ultrasound in medicine & biology.

[9]  Zhongping Chen,et al.  Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography. , 1998, Optics express.

[10]  van der J.J.A.M. Mullen,et al.  THE EXCITATION TEMPERATURE IN (HELIUM) PLASMAS , 1999 .

[11]  Shuhong Yu,et al.  Formation of silver nanowires by a novel solid-liquid phase arc discharge method , 1999 .

[12]  H. Akiyama Streamer discharges in liquids and their applications , 2000 .

[13]  P. Šunka,et al.  Pulse electrical discharges in water and their applications , 2001 .

[14]  Yong-Seok Hwang,et al.  Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube , 2002 .

[15]  Richard N. Zare,et al.  Optical diagnostics of atmospheric pressure air plasmas , 2003 .

[16]  Alan Barkun,et al.  Consensus Recommendations for Managing Patients with Nonvariceal Upper Gastrointestinal Bleeding , 2003, Annals of Internal Medicine.

[17]  A. Kono,et al.  High-Spatial-Resolution Multichannel Thomson Scattering Measurements for Atmospheric Pressure Microdischarge , 2004 .

[18]  M. Kong,et al.  Frequency range of stable dielectric-barrier discharges in atmospheric He and N/sub 2/ , 2004, IEEE Transactions on Plasma Science.

[19]  Kenneth S. Suslick,et al.  Plasma formation and temperature measurement during single-bubble cavitation , 2005, Nature.

[20]  M. Teschke,et al.  High-speed photographs of a dielectric barrier atmospheric pressure plasma jet , 2005, IEEE Transactions on Plasma Science.

[21]  Electron kinetic effects in atmospheric dielectric-barrier glow discharges , 2005 .

[22]  Xinpei Lu,et al.  Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses , 2006 .

[23]  J. Mullen,et al.  A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model , 2006 .

[24]  Jianjun Shi,et al.  Physical Mechanisms of Inactivation of Bacillus subtilis Spores Using Cold Atmospheric Plasmas , 2006, IEEE Transactions on Plasma Science.

[25]  J. Gugenheim,et al.  Use of PlasmaJet™ System in Patients Undergoing Abdominal Lipectomy following Massive Weight Loss Resulting from Bariatric Surgery: Early Experience , 2006, Obesity surgery.

[26]  A. Fridman,et al.  Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air , 2006 .

[27]  Bruce R. Locke,et al.  Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment , 2006 .

[28]  Jianjun Shi,et al.  Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets , 2006 .

[29]  J. Walsh,et al.  Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses , 2007 .

[30]  Michael G. Kong,et al.  Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms , 2007 .

[31]  James L. Walsh,et al.  Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants , 2007 .

[32]  James L. Walsh,et al.  10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces , 2007 .

[33]  H. Uhm,et al.  Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores , 2007 .

[34]  Jing Zhang,et al.  A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet , 2008 .

[35]  J. Vierendeels,et al.  Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems , 2008 .

[36]  D. Graves,et al.  Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues , 2008, IEEE Transactions on Plasma Science.

[37]  Juergen F. Kolb,et al.  Cold atmospheric pressure air plasma jet for medical applications , 2008 .

[38]  Qiang Chen,et al.  Microplasma discharge in ethanol solution: Characterization and its application to the synthesis of carbon microstructures , 2008 .

[39]  Szetsen Lee,et al.  Raman study of carbon nanotube purification using atmospheric pressure plasma , 2008 .

[40]  T. Frențiu,et al.  Spectroscopic investigations on a low power atmospheric pressure capacitively coupled helium plasma , 2008 .

[41]  Multiple current peaks and mode conversion of atmospheric pressure glow dielectric barrier discharge in helium , 2008 .

[42]  Y. Ping,et al.  Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure , 2008 .

[43]  L. O'Neill,et al.  Controlling deposition rates in an atmospheric pressure plasma system , 2008 .

[44]  G. Shama,et al.  Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. , 2008, Journal of food protection.

[45]  Biofilm deposited by the atmospheric plasma liquid sputtering , 2008 .

[46]  Xianhui Zhang,et al.  Ablation of liver cancer cells in vitro by a plasma needle , 2008 .

[47]  V. M. Donnelly,et al.  Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering , 2008 .

[48]  J. Walsh,et al.  Contrasting characteristics of linear-field and cross-field atmospheric plasma jets , 2008 .

[49]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[50]  Manuel Á. González,et al.  Characterization of a direct dc-excited discharge in water by optical emission spectroscopy , 2009 .

[51]  Christophe Leys,et al.  Non-thermal plasmas in and in contact with liquids , 2009 .

[52]  P. Bruggeman,et al.  Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode , 2009 .

[53]  Jm Jose Palomares,et al.  A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas , 2009 .

[54]  Y. Nagasaki,et al.  Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets , 2009 .

[55]  K. Tachibana,et al.  Measurement of electron density in atmospheric pressure small-scale plasmas using CO2-laser heterodyne interferometry , 2009 .

[56]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[57]  James L. Walsh,et al.  Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment , 2009 .

[58]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[59]  J. Walsh,et al.  Spatially extended atmospheric plasma arrays , 2010 .

[60]  F. Iza,et al.  Global model of low-temperature atmospheric-pressure He + H2O plasmas , 2010 .

[61]  M. Rong,et al.  Main Species and Physicochemical Processes in Cold Atmospheric‐pressure He + O2 Plasmas , 2010 .

[62]  R. Gesche,et al.  Electric probe investigations of microwave generated, atmospheric pressure, plasma jets , 2010 .

[63]  Akira Mizuno,et al.  Biological Evaluation of DNA Damage in Bacteriophages Inactivated by Atmospheric Pressure Cold Plasma , 2010 .

[64]  B. Lacour,et al.  DNA oxidation by singlet delta oxygen produced by atmospheric pressure microdischarges , 2010 .

[65]  Christophe Leys,et al.  Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements , 2010 .

[66]  J. Sobilo,et al.  Antitumor Effect of Plasma Treatment on U87 Glioma Xenografts: Preliminary Results , 2010 .

[67]  P. Bruggeman,et al.  Mass spectrometry study of positive and negative ions in a capacitively coupled atmospheric pressure RF excited glow discharge in He–water mixtures , 2010 .

[68]  S. Anghel,et al.  Physical and analytical characteristics of an atmospheric pressure argon–helium radiofrequency capacitively coupled plasma ☆ , 2010 .

[69]  M. Rong,et al.  Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium–oxygen glow discharges , 2010 .

[70]  James L. Walsh,et al.  Three distinct modes in a cold atmospheric pressure plasma jet , 2010 .

[71]  M. Rong,et al.  He+O2+H2O plasmas as a source of reactive oxygen species , 2011 .