Review—Manganese Dissolution from Spinel Cathode: Few Unanswered Questions

[1]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[2]  Chunlei Wang,et al.  Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode , 2009 .

[3]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[4]  T. Bučko,et al.  Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles , 2012 .

[5]  Caixia Cheng,et al.  Effects of equimolar Mg (II) and Si (IV) co-doping on the electrochemical properties of spinel LiMn2−2xMgxSixO4 prepared by citric acid assisted sol–gel method , 2015 .

[6]  P. Ragupathy Understanding the role of manganese valence in 4 V spinel cathodes for lithium-ion batteries: a systematic investigation , 2014 .

[7]  A. Manthiram,et al.  Microstrain and Capacity Fade in Spinel Manganese Oxides , 2002 .

[8]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[9]  A. Arof,et al.  Synthesis Methods and Electrochemical Performance: A Theory on the Valence Disproportionation in LiMyMn2–yO4 (M = Mn, Co) with Interalia Guiding Principles for a Photo-Chargeable Lithium Battery , 2013 .

[10]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[11]  B. Hwang,et al.  Trap State Spectroscopy of LiMyMn2-yO4 (M = Mn, Ni, Co): Guiding Principles for Electrochemical Performance , 2013 .

[12]  K. Striebel,et al.  Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments , 2003 .

[13]  Keld West,et al.  Modeling of Porous Insertion Electrodes with Liquid Electrolyte , 1982 .

[14]  Hochun Lee,et al.  Effects of binder content on manganese dissolution and electrochemical performances of spinel lithium manganese oxide cathodes for lithium ion batteries , 2015 .

[15]  Koh Takahashi,et al.  Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries , 2004 .

[16]  Chung‐Hsin Lu,et al.  Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries , 2002 .

[17]  Arunachala Mada Kannan,et al.  Surface/Chemically Modified LiMn2 O 4 Cathodes for Lithium-Ion Batteries , 2002 .

[18]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[19]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[20]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[21]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[22]  Shuangyin Wang,et al.  Plasma-Assisted Sulfur Doping of LiMn2O4 for High-Performance Lithium-Ion Batteries , 2015 .

[23]  Anton Van der Ven,et al.  First-principles study of competing mechanisms of nondilute Li diffusion in spinel Li x TiS 2 , 2011 .

[24]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[25]  Ilias Belharouak,et al.  Advanced cathode materials for high-power applications , 2005 .

[26]  Yongyao Xia,et al.  Cycling Stability of Spinel LiMn2O4 with Different Particle Sizes in Aqueous Electrolyte , 2015 .

[27]  M. Safari,et al.  Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries , 2009 .

[28]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[29]  Jung Han Lee,et al.  Improved cyclic stability by octahedral Co3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery , 2016 .

[30]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[31]  M. Verbrugge,et al.  Modeling Lithium Intercalation of Single‐Fiber Carbon Microelectrodes , 1996 .

[32]  Muratahan Aykol,et al.  Surface phase diagram and stability of (001) and (111) LiM n 2 O 4 spinel oxides , 2015 .

[33]  J. Choi,et al.  A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. , 2012, Nano letters.

[34]  P. Bruce,et al.  Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity , 1999 .

[35]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[36]  Keonkuk Kim,et al.  Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries , 2007 .

[37]  Jiangyan Wang,et al.  Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries , 2016 .

[38]  T. Akiyama,et al.  Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries , 2015 .

[39]  Xianke Lin,et al.  A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries , 2013 .

[40]  Ralph E. White,et al.  A model for the deliverable capacity of the TiS2 electrode in a Li/TiS2 cell , 1993 .

[41]  R. Katiyar,et al.  Improvement of the cycleability of nano-crystalline lithium manganate cathodes by cation co-doping , 2004 .

[42]  Anton Van der Ven,et al.  Phase stability and nondilute Li diffusion in spinel Li 1 + x Ti 2 O 4 , 2010 .

[43]  D. J. Lee,et al.  Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells , 2010 .

[44]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[45]  Solution-combustion synthesized aluminium-doped spinel (LiAlxMn2−xO4) as a high-performance lithium-ion battery cathode material , 2015 .

[46]  R. Spotnitz,et al.  A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity , 1998 .

[47]  Tao Huang,et al.  Ethyl 3,3,3-trifluoropropanoate as an additive to improve the cycling performance of LiMn 2 O 4 cathode on lithium-ion batteries at elevated temperature , 2016 .

[48]  Lei Tian,et al.  Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte , 2010 .

[49]  Jun Lu,et al.  Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems , 2013, Nature Communications.

[50]  Marc Doyle,et al.  Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases , 1995 .

[51]  K. Edström,et al.  Manganese in the SEI Layer of Li4Ti5O12 Studied by Combined NEXAFS and HAXPES Techniques , 2016 .

[52]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[53]  S. Dou,et al.  Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect , 1999 .

[54]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[55]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[56]  Seung M. Oh,et al.  Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / Li x Mn2 O 4 Rechargeable Cells , 1997 .

[57]  G. Liu,et al.  Porous LiMn2O4 with improved rate capability synthesised by facile biotemplate method , 2016 .

[58]  Takao Inoue,et al.  An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature , 1998 .

[59]  J. Goodenough,et al.  Revealing the Reconstructed Surface of Li[Mn2]O4. , 2016, Nano letters.

[60]  Chang-Sam Kim,et al.  Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance , 2014 .

[61]  Jun-ichi Yamaki,et al.  Decomposition reaction of LiPF6-based electrolytes for lithium ion cells , 2006 .

[62]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[63]  R. Katiyar,et al.  Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries , 2007 .

[64]  F. Coowar,et al.  The Li1+xMn2O4C system Materials and electrochemical aspects , 1995 .

[65]  Jaephil Cho,et al.  High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. , 2014, Nano letters.

[66]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[67]  W. Yoon,et al.  Novel chelating agent assisted dual doped spinel via sol–gel method for lithium rechargeable batteries , 2016 .

[68]  Shinichi Komaba,et al.  Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries , 2003 .

[69]  T. Richardson,et al.  FTIR Spectroscopy of Metal Oxide Insertion Electrodes A New Diagnostic Tool for Analysis of Capacity Fading in Secondary Cells , 1996 .

[70]  Long Cai,et al.  Capacity Fade Model for Spinel LiMn2O4 Electrode , 2013 .

[71]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[72]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[73]  Yang Yong,et al.  Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature , 2009 .

[74]  Seung‐Taek Myung,et al.  Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method , 2001 .

[75]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[76]  M. Winter,et al.  Investigations on the C-Rate and Temperature Dependence of Manganese Dissolution/Deposition in LiMn2O4/Li4Ti5O12 Lithium Ion Batteries , 2016 .

[77]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[78]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[79]  Matthieu Dubarry,et al.  From single cell model to battery pack simulation for Li-ion batteries , 2009 .

[80]  W. F. Howard,et al.  M3+-modified LiMn2O4 spinel intercalation cathodes: II. Electrochemical stabilization by Cr3+ , 1997 .

[81]  J. Goodenough,et al.  Li[Mn2]O4 spinel cathode material showing no capacity fading in the 3 V range , 2000 .

[82]  Ryoji Marubayashi,et al.  Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries , 2002 .

[83]  Yi Wu,et al.  Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries , 2011 .

[84]  R. Benedek,et al.  Reaction Energy for LiMn2O4 Spinel Dissolution in Acid , 2006 .

[85]  S. Schougaard,et al.  Manganese dissolution in lithium-ion positive electrode materials , 2016 .

[86]  A. Manthiram,et al.  Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes , 2006 .

[87]  Zonghai Chen,et al.  Capacity Fade of Li1 + x Mn2 − x O4-Based Lithium-Ion Cells , 2006 .

[88]  Xiao‐Qing Yang,et al.  Correlating Capacity Fading and Structural Changes in Li1 + y Mn2 − y O 4 − δ Spinel Cathode Materials: A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency , 2001 .

[89]  J. Morales,et al.  Use of Li–M–Mn–O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries , 1999 .

[90]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[91]  Y. Yue,et al.  Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials , 2016, Journal of Solid State Electrochemistry.

[92]  Subbarao Surampudi,et al.  Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries , 1991 .

[93]  A. Manthiram,et al.  Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides , 2004 .

[94]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[95]  A. Manthiram,et al.  Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides , 2003 .

[96]  Liquan Chen,et al.  Improvement of cycle performance of lithium ion cell LiMn2O4/LixV2O5 with aqueous solution electrolyte by polypyrrole coating on anode , 2007 .

[97]  H. Jang,et al.  Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides , 2008 .

[98]  Anton Van der Ven,et al.  Phase transformations and volume changes in spinel LixMn2O4 , 2000 .

[99]  M. Verbrugge,et al.  Lithium intercalation of carbon-fiber microelectrodes , 1996 .

[100]  Qingyu Li,et al.  Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries , 2015 .

[101]  R. Benedek,et al.  Simulation of the surface structure of lithium manganese oxide spinel , 2011 .

[102]  B. Scrosati,et al.  Spherical core-shell Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 spinels as high performance cathodes for lithium batteries , 2011 .

[103]  Michael M. Thackeray,et al.  Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling , 1999 .

[104]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[105]  T. Akiyama,et al.  Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries , 2016 .

[106]  Marc Doyle,et al.  A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling , 1994 .

[107]  M. Balasubramanian,et al.  Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. , 2014, Physical chemistry chemical physics : PCCP.

[108]  Gan Ning,et al.  Cycle Life Modeling of Lithium-Ion Batteries , 2004 .

[109]  Ann Marie Sastry,et al.  Numerical Simulation of the Effect of the Dissolution of LiMn2O4 Particles on Li-Ion Battery Performance , 2011 .

[110]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[111]  X. T. Chen,et al.  Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method , 2006 .

[112]  Takao Inoue,et al.  A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80°C, and the suppressing substances of its fading , 2001 .

[113]  Zhixing Wang,et al.  Electrochemical analysis for cycle performance and capacity fading of lithium manganese oxide spinel cathode at elevated temperature using p-toluenesulfonyl isocyanate as electrolyte additive , 2015 .

[114]  Keld West,et al.  Discharge performance of composite insertion electrodes Analysis of discharges of 50 vol.% Li3N/TiS2 electrodes , 1993 .

[115]  Anbao Yuan,et al.  Electrochemical studies of LiCrxFexMn2−2xO4 in an aqueous electrolyte , 2012, Journal of Solid State Electrochemistry.

[116]  H. Ming,et al.  Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications , 2014 .

[117]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[118]  Xingcheng Xiao,et al.  Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries , 2013 .

[119]  Keld West,et al.  The Composite Insertion Electrode Theoretical Part. Equilibrium in the Insertion Compound and Linear Potential Dependence , 1984 .

[120]  D. Guyomard,et al.  The Cr-Substituted Spinel Mn Oxides LiCryMn2−yO4(0≤y≤1): Rietveld Analysis of the Structure Modifications Induced by the Electrochemical Lithium Deintercalation , 1997 .

[121]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[122]  Jonghyun Park,et al.  Electronic and Bonding Properties of LiMn2O4 Spinel with Different Surface Orientations and Doping Elements and Their Effects on Manganese Dissolution , 2016 .