Mechanism and regulation of cytoplasmic dynein.

Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.

[1]  Florian Berger,et al.  Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains , 2015, Proceedings of the National Academy of Sciences.

[2]  Samara L. Reck-Peterson,et al.  Cytoplasmic dynein is required for the spatial organization of protein aggregates in filamentous fungi. , 2015, Cell reports.

[3]  Kai Zhang,et al.  The structure of the dynactin complex and its interaction with dynein , 2015, Science.

[4]  T. Schroer,et al.  Structural organization of the dynein-dynactin complex bound to microtubules , 2015, Nature Structural &Molecular Biology.

[5]  Richard B. Vallee,et al.  Control of cytoplasmic dynein force production and processivity by its C-terminal domain , 2015, Nature Communications.

[6]  T. Surrey,et al.  Regulation of processive motion and microtubule localization of cytoplasmic dynein. , 2015, Biochemical Society transactions.

[7]  A. Carter,et al.  Structure of human cytoplasmic dynein-2 primed for its powerstroke , 2014, Nature.

[8]  A. Yildiz,et al.  THE AAA3 DOMAIN OF CYTOPLASMIC DYNEIN ACTS AS A SWITCH TO FACILITATE MICROTUBULE RELEASE , 2014, Nature Structural &Molecular Biology.

[9]  Samara L. Reck-Peterson,et al.  Lis1 regulates dynein by sterically blocking its mechanochemical cycle , 2014, eLife.

[10]  Nan Zhang,et al.  Allosteric Communication in the Dynein Motor Domain , 2014, Cell.

[11]  E. Holzbaur,et al.  MAPK8IP1/JIP1 regulates the trafficking of autophagosomes in neurons , 2014, Autophagy.

[12]  E. Holzbaur,et al.  Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation , 2014, Neuron.

[13]  R. Vallee,et al.  Autoregulatory Mechanism for Dynactin Control of Processive and Diffusive Dynein Transport , 2014, Nature Cell Biology.

[14]  E. Holzbaur,et al.  Integrated regulation of motor-driven organelle transport by scaffolding proteins. , 2014, Trends in cell biology.

[15]  Ken’ya Furuta,et al.  Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein , 2014, Nature Cell Biology.

[16]  T. Schroer,et al.  Dynactin 3D structure: implications for assembly and dynein binding. , 2014, Journal of molecular biology.

[17]  E. Holzbaur,et al.  Dynactin functions as both a dynamic tether and brake during dynein-driven motility , 2014, Nature Communications.

[18]  Gira Bhabha,et al.  Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes , 2014, Science.

[19]  J. Flanagan,et al.  APC Is an RNA-Binding Protein, and Its Interactome Provides a Link to Neural Development and Microtubule Assembly , 2014, Cell.

[20]  Michel O. Steinmetz,et al.  Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein , 2014, Nature Cell Biology.

[21]  Ha Thanh Thi Hoang,et al.  In vitro reconstitution of a highly processive recombinant human dynein complex , 2014, The EMBO journal.

[22]  Samara L. Reck-Peterson,et al.  Reconstitution of dynein transport to the microtubule plus end by kinesin , 2014, eLife.

[23]  Yanchang Wang,et al.  The current view for the silencing of the spindle assembly checkpoint , 2014, Cell cycle.

[24]  H. Arst,et al.  HookA is a novel dynein–early endosome linker critical for cargo movement in vivo , 2014, The Journal of cell biology.

[25]  N. Talbot,et al.  Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes , 2014, The Journal of cell biology.

[26]  C. Hoogenraad,et al.  New insights into mRNA trafficking in axons , 2014, Developmental neurobiology.

[27]  A. Wynshaw-Boris,et al.  LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex. , 2014, Human molecular genetics.

[28]  C. Hoogenraad,et al.  Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. , 2013, Biochemical Society transactions.

[29]  O. Reiner,et al.  LIS1 functions in normal development and disease , 2013, Current Opinion in Neurobiology.

[30]  J. Yates,et al.  Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis , 2013, Molecular biology of the cell.

[31]  Ambarish Kunwar,et al.  Teamwork in microtubule motors. , 2013, Trends in cell biology.

[32]  W. Hennah,et al.  NDE1 and NDEL1: twin neurodevelopmental proteins with similar ‘nature’ but different ‘nurture’ , 2013, Biomolecular concepts.

[33]  G. E. Osborn,et al.  Ordered Recruitment of Dynactin to the Microtubule Plus-End is Required for Efficient Initiation of Retrograde Axonal Transport , 2013, The Journal of Neuroscience.

[34]  Harish Chandra Soundararajan,et al.  Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs , 2013, The Journal of cell biology.

[35]  E. Holzbaur,et al.  Dynactin Subunit p150Glued Is a Neuron-Specific Anti-Catastrophe Factor , 2013, PLoS biology.

[36]  Zheng Wang,et al.  Distinct Functions of Nuclear Distribution Proteins LIS1, Ndel1 and NudCL in Regulating Axonal Mitochondrial Transport , 2013, Traffic.

[37]  I. Tolic-Nørrelykke,et al.  Dynein Motion Switches from Diffusive to Directed upon Cortical Anchoring , 2013, Cell.

[38]  B. Asselbergh,et al.  Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. , 2013, American journal of human genetics.

[39]  J. Veltman,et al.  Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. , 2013, American journal of human genetics.

[40]  D. MacArthur,et al.  Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. , 2013, American journal of human genetics.

[41]  Andrew N. Holding,et al.  Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. , 2013, Genes & development.

[42]  D. Zélénika,et al.  Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly , 2013, Nature Genetics.

[43]  H. Krämer,et al.  Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1 , 2013, The Journal of cell biology.

[44]  M. Poenie,et al.  Dynein and Dynactin Leverage Their Bivalent Character to Form a High-Affinity Interaction , 2013, PloS one.

[45]  T. Schroer,et al.  Dynactin helps target Polo‐like kinase 1 to kinetochores via its left‐handed beta‐helical p27 subunit , 2013, The EMBO journal.

[46]  J. Goldenring,et al.  Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system , 2013, Molecular biology of the cell.

[47]  Jean-Pierre Julien,et al.  Axonal transport deficits and neurodegenerative diseases , 2013, Nature Reviews Neuroscience.

[48]  F. Kull,et al.  Force generation by kinesin and myosin cytoskeletal motor proteins , 2013, Journal of Cell Science.

[49]  C. Horgan,et al.  Rab11 proteins in health and disease. , 2012, Biochemical Society transactions.

[50]  A. Hyman,et al.  BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures , 2012, Molecular biology of the cell.

[51]  S. Burgess,et al.  ATP-Driven Remodeling of the Linker Domain in the Dynein Motor , 2012, Structure.

[52]  T. Schroer,et al.  Dynactin's pointed-end complex is a cargo-targeting module , 2012, Molecular biology of the cell.

[53]  Samara L. Reck-Peterson,et al.  Structural Basis for Microtubule Binding and Release by Dynein , 2012, Science.

[54]  Samara L. Reck-Peterson,et al.  Lis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor , 2012, Cell.

[55]  Ethan Lee,et al.  Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis , 2012, Development.

[56]  Samara L. Reck-Peterson,et al.  Lis1 is an initiation factor for dynein-driven organelle transport , 2012, The Journal of cell biology.

[57]  E. Barbar,et al.  Intrinsic Disorder in Dynein Intermediate Chain Modulates Its Interactions with NudE and Dynactin* , 2012, The Journal of Biological Chemistry.

[58]  M. Lyons,et al.  LIS1 Duplication , 2012, Journal of child neurology.

[59]  A. Pestronk,et al.  Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy , 2012, Neurology.

[60]  E. Holzbaur,et al.  Dynactin Is Required for Transport Initiation from the Distal Axon , 2012, Neuron.

[61]  Ji Han Kim,et al.  The p150Glued CAP-Gly Domain Regulates Initiation of Retrograde Transport at Synaptic Termini , 2012, Neuron.

[62]  A. Carter,et al.  Insights into dynein motor domain function from a 3.3 Å crystal structure , 2012, Nature Structural &Molecular Biology.

[63]  E. Holzbaur,et al.  Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons , 2012, The Journal of cell biology.

[64]  Peter A. Combs,et al.  Cytoplasmic Dynein Moves Through Uncoordinated Stepping of the AAA+ Ring Domains , 2012, Science.

[65]  Samara L. Reck-Peterson,et al.  Dynein achieves processive motion using both stochastic and coordinated stepping , 2011, Nature Structural &Molecular Biology.

[66]  A. Le Bivic,et al.  Hook2 is involved in the morphogenesis of the primary cilium , 2011, Molecular biology of the cell.

[67]  Deanna S. Smith,et al.  A Cdk5-Dependent Switch Regulates Lis1/Ndel1/Dynein-Driven Organelle Transport in Adult Axons , 2011, The Journal of Neuroscience.

[68]  R. Vallee,et al.  High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport , 2011, The Journal of cell biology.

[69]  R. Vallee,et al.  Mutually Exclusive Cytoplasmic Dynein Regulation by NudE-Lis1 and Dynactin* , 2011, The Journal of Biological Chemistry.

[70]  Wei-Lih Lee,et al.  Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation , 2011, Bioarchitecture.

[71]  Mark P. Dodding,et al.  Coupling viruses to dynein and kinesin‐1 , 2011, The EMBO journal.

[72]  M. Weedon,et al.  Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. , 2011, American journal of human genetics.

[73]  Jun Zhang,et al.  The p25 subunit of the dynactin complex is required for dynein–early endosome interaction , 2011, The Journal of cell biology.

[74]  K. Sutoh,et al.  X-ray structure of a functional full-length dynein motor domain , 2011, Nature Structural &Molecular Biology.

[75]  K. Sutoh,et al.  C‐sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation , 2011, FEBS letters.

[76]  R. Vale,et al.  Crystal Structure of the Dynein Motor Domain , 2011, Science.

[77]  T. Akashi,et al.  Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. , 2011, Cerebral cortex.

[78]  Z. Derewenda,et al.  The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein , 2011, The Journal of cell biology.

[79]  S. Geley,et al.  Spindly switch controls anaphase: Spindly and RZZ functions in chromosome attachment and mitotic checkpoint control , 2011, Cell cycle.

[80]  Yixian Zheng,et al.  Identification of a Novel Dynein Binding Domain in Nudel Essential for Spindle Pole Organization in Xenopus Egg Extract* , 2010, The Journal of Biological Chemistry.

[81]  Jun Zhang,et al.  The microtubule plus-end localization of Aspergillus dynein is important for dynein–early-endosome interaction but not for dynein ATPase activation , 2010, Journal of Cell Science.

[82]  S. Bullock,et al.  Bicaudal-D Regulates Fragile X Mental Retardation Protein Levels, Motility, and Function during Neuronal Morphogenesis , 2010, Current Biology.

[83]  K. Oegema,et al.  Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. , 2010, Genes & development.

[84]  K. Vaughan,et al.  Dynein at the kinetochore: Timing, Interactions and Functions. , 2010, Seminars in cell & developmental biology.

[85]  R. Vallee,et al.  LIS1 and NudE Induce a Persistent Dynein Force-Producing State , 2010, Cell.

[86]  C. Futter,et al.  Rab11-FIP3 binds dynein light intermediate chain 2 and its overexpression fragments the Golgi complex. , 2010, Biochemical and biophysical research communications.

[87]  C. Hoogenraad,et al.  Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry , 2010, PLoS biology.

[88]  A. Wynshaw-Boris,et al.  The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis , 2010, Cell adhesion & migration.

[89]  S. Bullock,et al.  Bicaudal‐D binds clathrin heavy chain to promote its transport and augments synaptic vesicle recycling , 2010, The EMBO journal.

[90]  V. Allan,et al.  Functional interplay between LIS1, NDE1 and NDEL1 in dynein-dependent organelle positioning , 2010, Journal of Cell Science.

[91]  A. Wynshaw-Boris,et al.  Distinct Dose-Dependent Cortical Neuronal Migration and Neurite Extension Defects in Lis1 and Ndel1 Mutant Mice , 2009, The Journal of Neuroscience.

[92]  C. Holt,et al.  Subcellular mRNA Localization in Animal Cells and Why It Matters , 2009, Science.

[93]  Mariela Loschi,et al.  Dynein and kinesin regulate stress-granule and P-body dynamics , 2009, Journal of Cell Science.

[94]  I. Zaliapin,et al.  CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. , 2009, Developmental cell.

[95]  J. Cooper,et al.  Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. , 2009, Cell motility and the cytoskeleton.

[96]  A. Destée,et al.  Characterization of DCTN1 genetic variability in neurodegeneration , 2009, Neurology.

[97]  D. Gerlich,et al.  Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly , 2009, The Journal of cell biology.

[98]  Samara L. Reck-Peterson,et al.  Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin , 2009, Proceedings of the National Academy of Sciences.

[99]  Wei-Lih Lee,et al.  Motor- and Tail-Dependent Targeting of Dynein to Microtubule Plus Ends and the Cell Cortex , 2009, Current Biology.

[100]  S. Burgess,et al.  Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding , 2009, Nature Structural &Molecular Biology.

[101]  S. Burgess,et al.  AAA+ Ring and Linker Swing Mechanism in the Dynein Motor , 2009, Cell.

[102]  M. Farrer,et al.  DCTN1 mutations in Perry syndrome , 2009, Nature Genetics.

[103]  S. Varambally,et al.  Structure and Functional Role of Dynein's Microtubule-Binding Domain , 2008, Science.

[104]  M. Setou,et al.  LIS1 and NDEL1 coordinate the plus‐end‐directed transport of cytoplasmic dynein , 2008, The EMBO journal.

[105]  Ramsés Ayala,et al.  Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells , 2008, The Journal of cell biology.

[106]  Samara L. Reck-Peterson,et al.  Regulatory ATPase Sites of Cytoplasmic Dynein Affect Processivity and Force Generation*S⃞ , 2008, Journal of Biological Chemistry.

[107]  K. Oegema,et al.  A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. , 2008, Genes & development.

[108]  A. Andrieux,et al.  A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae , 2008, Journal of Cell Science.

[109]  A. Wynshaw-Boris,et al.  Neuroepithelial Stem Cell Proliferation Requires LIS1 for Precise Spindle Orientation and Symmetric Division , 2008, Cell.

[110]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[111]  A. Wynshaw-Boris Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development , 2007, Clinical genetics.

[112]  E. Formstecher,et al.  Rab6 and the secretory pathway affect oocyte polarity in Drosophila , 2007, Development.

[113]  B. Wickstead,et al.  Dyneins Across Eukaryotes: A Comparative Genomic Analysis , 2007, Traffic.

[114]  R. Vallee,et al.  Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue , 2007, Nature Neuroscience.

[115]  R. Vale,et al.  Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore , 2007, The Journal of cell biology.

[116]  H. Krämer,et al.  Hook2 contributes to aggresome formation , 2007, BMC Cell Biology.

[117]  A. Ephrussi,et al.  Rab6 mediates membrane organization and determinant localization during Drosophila oogenesis , 2007, Development.

[118]  H. Krämer,et al.  Hook2 Localizes to the Centrosome, Binds Directly to Centriolin/CEP110 and Contributes to Centrosomal Function , 2007, Traffic.

[119]  Tomohiro Shima,et al.  Two modes of microtubule sliding driven by cytoplasmic dynein , 2006, Proceedings of the National Academy of Sciences.

[120]  Samara L. Reck-Peterson,et al.  Single-Molecule Analysis of Dynein Processivity and Stepping Behavior , 2006, Cell.

[121]  S. Bullock,et al.  Guidance of Bidirectional Motor Complexes by mRNA Cargoes through Control of Dynein Number and Activity , 2006, Current Biology.

[122]  T. Schroer,et al.  Two-dimensional averaged images of the dynactin complex revealed by single particle analysis. , 2006, Journal of molecular biology.

[123]  G. Steinberg,et al.  A dynein loading zone for retrograde endosome motility at microtubule plus‐ends , 2006, The EMBO journal.

[124]  R. Vallee,et al.  The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. , 2006, Genes & development.

[125]  Y. Goldman,et al.  Processive bidirectional motion of dynein–dynactin complexes in vitro , 2006, Nature Cell Biology.

[126]  Hideo Higuchi,et al.  Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[127]  U. Greber,et al.  A Superhighway to Virus Infection , 2006, Cell.

[128]  Andrew D. Stephens,et al.  A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules , 2006, Nature Cell Biology.

[129]  N. Hiraiwa,et al.  Complete Loss of Ndel1 Results in Neuronal Migration Defects and Early Embryonic Lethality , 2005, Molecular and Cellular Biology.

[130]  Samara L. Reck-Peterson,et al.  The Affinity of the Dynein Microtubule-binding Domain Is Modulated by the Conformation of Its Coiled-coil Stalk*[boxs] , 2005, Journal of Biological Chemistry.

[131]  J. Cooper,et al.  NudEL targets dynein to microtubule ends through LIS1 , 2005, Nature Cell Biology.

[132]  D. James,et al.  A Novel Hook‐Related Protein Family and the Characterization of Hook‐Related Protein 1 , 2005, Traffic.

[133]  K. Sutoh,et al.  ATP hydrolysis cycle–dependent tail motions in cytoplasmic dynein , 2005, Nature Structural &Molecular Biology.

[134]  L. Tsai,et al.  Coupling PAF Signaling to Dynein Regulation Structure of LIS1 in Complex with PAF-Acetylhydrolase , 2004, Neuron.

[135]  C. Walsh,et al.  Mitotic Spindle Regulation by Nde1 Controls Cerebral Cortical Size , 2004, Neuron.

[136]  P. Gönczy,et al.  lis-1 is required for dynein-dependent cell division processes in C. elegans embryos , 2004, Journal of Cell Science.

[137]  Kazuo Sutoh,et al.  Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. , 2004, Biochemistry.

[138]  Masahide Kikkawa,et al.  Dynein and kinesin share an overlapping microtubule‐binding site , 2004, The EMBO journal.

[139]  Mohan L Gupta,et al.  Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. , 2004, Developmental cell.

[140]  J. Otlewski,et al.  The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. , 2004, Structure.

[141]  Y. Toyoshima,et al.  A Single-headed Recombinant Fragment of Dictyostelium Cytoplasmic Dynein Can Drive the Robust Sliding of Microtubules* , 2004, Journal of Biological Chemistry.

[142]  E. Holzbaur,et al.  A Direct Interaction between Cytoplasmic Dynein and Kinesin I May Coordinate Motor Activity* , 2004, Journal of Biological Chemistry.

[143]  B. C. Carter,et al.  Cytoplasmic dynein functions as a gear in response to load , 2004, Nature.

[144]  T. Schroer,et al.  Analysis of the dynein-dynactin interaction in vitro and in vivo. , 2003, Molecular biology of the cell.

[145]  C. Hoogenraad,et al.  Bicaudal D induces selective dynein‐mediated microtubule minus end‐directed transport , 2003, The EMBO journal.

[146]  R. Fischer,et al.  Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. , 2003, Molecular biology of the cell.

[147]  A. Silvanovich,et al.  The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. , 2003, Molecular biology of the cell.

[148]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[149]  Pedro Carvalho,et al.  Determinants of S. cerevisiae Dynein Localization and Activation Implications for the Mechanism of Spindle Positioning , 2003, Current Biology.

[150]  V. P. Efimov,et al.  Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. , 2003, Molecular biology of the cell.

[151]  R. Vale The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[152]  S. Burgess,et al.  Dynein structure and power stroke , 2003, Nature.

[153]  J. Cooper,et al.  The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast , 2003, The Journal of cell biology.

[154]  I. Vernos,et al.  Dynactin is required for bidirectional organelle transport , 2003, The Journal of cell biology.

[155]  C. I. Zeeuw,et al.  Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex , 2002, Nature Cell Biology.

[156]  R. Kopito,et al.  Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. , 2002, Cell motility and the cytoskeleton.

[157]  B. Byrne,et al.  A role for regulated binding of p150Glued to microtubule plus ends in organelle transport , 2002, The Journal of cell biology.

[158]  R. Vallee,et al.  Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function , 2002, The Journal of cell biology.

[159]  C. Hoogenraad,et al.  Mammalian Golgi‐associated Bicaudal‐D2 functions in the dynein–dynactin pathway by interacting with these complexes , 2001, The EMBO journal.

[160]  Xinran Liu,et al.  The Golgi-Associated Hook3 Protein Is a Member of a Novel Family of Microtubule-Binding Proteins , 2001, The Journal of cell biology.

[161]  A. Wynshaw-Boris,et al.  A LIS1/NUDEL/Cytoplasmic Dynein Heavy Chain Complex in the Developing and Adult Nervous System , 2000, Neuron.

[162]  L. Tsai,et al.  Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1 , 2000, Nature Cell Biology.

[163]  L. Luo,et al.  Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport , 2000, Nature Cell Biology.

[164]  R. Vallee,et al.  A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function , 2000, Nature Cell Biology.

[165]  N. Morris,et al.  The Lis1-Related Nudf Protein of Aspergillus nidulans Interacts with the Coiled-Coil Domain of the Nude/Ro11 Protein , 2000, The Journal of cell biology.

[166]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[167]  T. Schroer,et al.  Analysis of Dynactin Subcomplexes Reveals a Novel Actin-Related Protein Associated with the Arp1 Minifilament Pointed End , 1999, The Journal of cell biology.

[168]  R. Steward,et al.  Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. , 1999, Development.

[169]  M. Plamann,et al.  Microscopic analysis of Neurospora ropy mutants defective in nuclear distribution. , 1999, Fungal genetics and biology : FG & B.

[170]  E V Koonin,et al.  AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. , 1999, Genome research.

[171]  N. Hirokawa,et al.  Golgi Vesiculation and Lysosome Dispersion in Cells Lacking Cytoplasmic Dynein , 1998, The Journal of cell biology.

[172]  Richard B. Vallee,et al.  An extended microtubule-binding structure within the dynein motor domain , 1997, Nature.

[173]  H. Krämer,et al.  Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies , 1996, The Journal of cell biology.

[174]  M. Koonce,et al.  Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. , 1996, Molecular biology of the cell.

[175]  R. Vallee,et al.  Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued , 1995, The Journal of cell biology.

[176]  S. Karki,et al.  Affinity Chromatography Demonstrates a Direct Binding between Cytoplasmic Dynein and the Dynactin Complex * , 1995, The Journal of Biological Chemistry.

[177]  M. Sheetz,et al.  Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. , 1995, Biophysical journal.

[178]  S. Osmani,et al.  NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. , 1995, Molecular biology of the cell.

[179]  J. Cooper,et al.  Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin , 1994, The Journal of cell biology.

[180]  D. Ledbetter,et al.  Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats , 1993, Nature.

[181]  M. Sheetz,et al.  Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein , 1991, The Journal of cell biology.

[182]  M. Sheetz,et al.  Two activators of microtubule-based vesicle transport , 1991, The Journal of cell biology.

[183]  R. Vallee,et al.  Retrograde transport by the microtubule-associated protein MAP 1C , 1987, Nature.

[184]  R. Vallee,et al.  MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties , 1987, The Journal of cell biology.

[185]  G. Mocz,et al.  Photosensitized cleavage of dynein heavy chains. Cleavage at the "V1 site" by irradiation at 365 nm in the presence of ATP and vanadate. , 1987, The Journal of biological chemistry.

[186]  E. Wieschaus,et al.  Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. , 1986, Genetics.

[187]  U. Goodenough,et al.  Structural comparison of purified dynein proteins with in situ dynein arms. , 1984, Journal of molecular biology.

[188]  Toshiki Yagi,et al.  Bioinformatic approaches to dynein heavy chain classification. , 2009, Methods in cell biology.

[189]  K. Sherman Xenopus Egg Extracts , 2006 .

[190]  T. Schroer,et al.  Dynactin increases the processivity of the cytoplasmic dynein motor , 1999, Nature Cell Biology.