Spectroelectrochemistry of blue copper proteins: pH and temperature dependences of the reduction potentials of five azurins

[1]  B. Karlsson,et al.  Rack‐induced bonding in blue copper proteins: Spectroscopic properties and reduction potential of the azurin mutant Met‐121 → Leu , 1989 .

[2]  M. Karplus,et al.  Electrostatic effects of charge perturbations introduced by metal oxidation in proteins. A theoretical analysis. , 1988, Journal of molecular biology.

[3]  C. Groeneveld,et al.  1H nuclear magnetic resonance study of the protonation behaviour of the histidine residues and the electron self-exchange reaction of azurin from Alcaligenes denitrificans. , 1988, Journal of Molecular Biology.

[4]  C. Groeneveld,et al.  NMR study of structure and electron transfer mechanism of Pseudomonas aeruginosa azurin. , 1988, Journal of Biological Chemistry.

[5]  H. Matsubara,et al.  Hydrogen bonding of sulfur ligands in blue copper and iron-sulfur proteins: detection by resonance Raman spectroscopy. , 1987, Biochemistry.

[6]  E N Baker,et al.  Structure of azurin from Alcaligenes denitrificans refinement at 1.8 A resolution and comparison of the two crystallographically independent molecules. , 1987, Journal of molecular biology.

[7]  H. Gray,et al.  Spectrochemical studies on the blue copper protein azurin from Alcaligenes denitrificans. , 1987, Biochemistry.

[8]  E. Baker,et al.  Blue copper proteins. The copper site in azurin from Alcaligenes denitrificans , 1986 .

[9]  K. Hodgson,et al.  A selenomethionine-containing azurin from an auxotroph of Pseudomonas aeruginosa. , 1985, Journal of Biological Chemistry.

[10]  J. Guss,et al.  The crystal structure of poplar apoplastocyanin at 1.8-A resolution. The geometry of the copper-binding site is created by the polypeptide. , 1984, The Journal of biological chemistry.

[11]  G. Moore,et al.  The effect of iron-hexacyanide binding on the determination of redox potentials of cytochromes and copper proteins. , 1983, Biochimica et Biophysica Acta.

[12]  B F Anderson,et al.  Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution. , 1983, Journal of molecular biology.

[13]  R. Bersohn,et al.  pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer. , 1983, Biochemistry.

[14]  H. Hill,et al.  The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa , 1982, FEBS letters.

[15]  L. Sieker,et al.  A crystallographic model for azurin a 3 A resolution. , 1978, Journal of molecular biology.

[16]  K. Uğurbil,et al.  Nuclear magnetic resonance study of exchangeable and nonexchangeable protons in azurin from Pseudomonas aeruginosa. , 1977, Biochemistry.

[17]  K. Uğurbil,et al.  Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy. , 1977, Biochemistry.

[18]  I. Pecht,et al.  Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. , 1976, Biochemistry.

[19]  M. Wynn,et al.  The amino acid sequences of cytochromes c-551 from three species of Pseudomonas. , 1973, The Biochemical journal.

[20]  R. Ambler,et al.  THE AMINO ACID SEQUENCE OF PSEUDOMONAS FLUORESCENS AZURIN. , 1967, Journal of molecular biology.

[21]  Robert C. Taylor,et al.  Infra-red spectra of 1:10-phenanthroline metal complexes in the rock salt region below 2000 cm−1 , 1959 .

[22]  H. Hill,et al.  The assignment of the 1H nuclear magnetic resonance spectrum of azurin. An investigation of the 1H NMR spectrum of the blue copper protein, azurin, from Pseudomonas aeruginosa, with reference to the previously determined crystal structure. , 1984, European journal of biochemistry.

[23]  H. Gray,et al.  Thermodynamics of metalloprotein electron transfer reactions , 1980 .

[24]  W. Heineman,et al.  Optically transparent thin layer electrode techniquesfor the study of biological redox systems , 1979 .

[25]  H. Allen Characteristics of azurin from pseudomonas aeruginosa via 270-MHz 1H nuclear magnetic resonance spectroscopy , 1979 .

[26]  P. Dutton Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. , 1978, Methods in enzymology.

[27]  H. Taube,et al.  Synthesis and properties of pentaamminepyridineruthenium(II) and related pentaammineruthenium complexes of aromatic nitrogen heterocycles , 1968 .

[28]  R. Ambler THE PURIFICATION AND AMINO ACID COMPOSITION OF PSEUDOMONAS CYTOCHROME C-551. , 1963, The Biochemical journal.