Progress in development of flexible metal–air batteries

Flexible electronics has gained great interest in emerging wearable or rolling-up gadgets, such as foldable displays, electronic papers, and other personal multimedia devices. Subsequently, there is a need to develop energy storage devices that are pliable, inexpensive, and lightweight. Metal–air batteries have been identified as one of alternative energy storages for cost effective and high energy density applications. They offer cheaper production cost and higher energy density than most of the currently available battery technologies. Thus, they are promising candidates for flexible energy storage devices. Flexible metal–air batteries have to maintain their performances during various mechanical deformations. To date, efforts have been focused on fabricating flexible components for metal–air batteries. This review presents a brief introduction to the field, followed by progress on development of flexible electrolytes, electrodes, and prototype devices. Challenges and outlook towards the practical use o...

[1]  Yuliang Cao,et al.  Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution , 2004 .

[2]  Hatem Akbulut,et al.  Free-standing flexible graphene oxide paper electrode for rechargeable Li–O2 batteries , 2014 .

[3]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[4]  Yuhai Hu,et al.  Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies , 2014 .

[5]  Jun Chen,et al.  Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. , 2012, Chemical Society reviews.

[6]  Zhaolin Liu,et al.  A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries , 2014 .

[7]  Subodh G. Mhaisalkar,et al.  Paper like free-standing hybrid single-walled carbon nanotubes air electrodes for zinc–air batteries , 2012, Journal of Solid State Electrochemistry.

[8]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[9]  Ludwig Jörissen,et al.  Bifunctional oxygen/air electrodes , 2006 .

[10]  J. Jindra,et al.  Zinc-air cell with neutral electrolyte , 1973 .

[11]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[12]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[13]  A. A. Mohamad Zn/gelled 6 M KOH/O2 zinc-air battery , 2006 .

[14]  Xiaogang Zhang,et al.  MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells , 2004 .

[15]  Genevieve Dion,et al.  Textile energy storage in perspective , 2014 .

[16]  Lin Yang,et al.  Flexible High‐Energy Polymer‐Electrolyte‐Based Rechargeable Zinc–Air Batteries , 2015, Advanced materials.

[17]  Dan Xu,et al.  Flexible and Foldable Li–O2 Battery Based on Paper‐Ink Cathode , 2015, Advanced materials.

[18]  Douglas G. Ivey,et al.  Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions , 2013 .

[19]  Cuie Wen,et al.  High Energy Density Metal-Air Batteries: A Review , 2013 .

[20]  Y. Lai,et al.  A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries , 2013 .

[21]  Andrzej Lewandowski,et al.  Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte , 2000 .

[22]  Jean-François Fauvarque,et al.  Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO) , 2000 .

[23]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[24]  Tao An,et al.  Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts , 2015 .

[25]  M. Hilder,et al.  Paper-based, printed zinc–air battery , 2009 .

[26]  Pucheng Pei,et al.  Technologies for extending zinc–air battery’s cyclelife: A review , 2014 .

[27]  Raihan Othman,et al.  Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells , 2001 .

[28]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[29]  O. Haas,et al.  Modeling of an electrically rechargeable alkaline Zn–air battery , 2002 .

[30]  E. Peled,et al.  Challenges and obstacles in the development of sodium–air batteries , 2013 .

[31]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[32]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[33]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[34]  Huisheng Peng,et al.  Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. , 2015, Angewandte Chemie.

[35]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[36]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[37]  Ralph E. White,et al.  Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide , 1997 .

[38]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[39]  Jun Chen,et al.  Magnesium–air batteries: from principle to application , 2014 .

[40]  Mietek Jaroniec,et al.  Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. , 2015, Angewandte Chemie.

[41]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[42]  Chun–Chen Yang,et al.  Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes , 2006 .

[43]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[44]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[45]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[46]  Volkmar M. Schmidt,et al.  Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials , 2001 .

[47]  Yunfeng Zhu,et al.  Alkaline poly(vinyl alcohol)/poly(acrylic acid) polymer electrolyte membrane for Ni-MH battery application , 2014, Ionics.

[48]  Dong Wook Kim,et al.  Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries , 2015 .

[49]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[50]  Dan Xu,et al.  Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. , 2014, Chemical Society reviews.

[51]  Meilin Liu,et al.  Recent Progress in Non‐Precious Catalysts for Metal‐Air Batteries , 2012 .

[52]  Philippe Stevens,et al.  Development of a Rechargeable Zinc-Air Battery , 2010 .

[53]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[54]  S. Narayanan,et al.  Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage , 2012 .

[55]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[56]  Sylvie Grugeon,et al.  Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. , 2010, Journal of the American Chemical Society.

[57]  Guosong Hong,et al.  Advanced zinc-air batteries based on high-performance hybrid electrocatalysts , 2013, Nature Communications.

[58]  Abdullah M. Asiri,et al.  Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. , 2015, Chemical communications.

[59]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[60]  Lars Carlsson,et al.  An iron—air vehicle battery , 1978 .

[61]  Minjoon Park,et al.  All‐Solid‐State Cable‐Type Flexible Zinc–Air Battery , 2015, Advanced materials.

[62]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[63]  Maria Forsyth,et al.  Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. , 2014, Physical chemistry chemical physics : PCCP.

[64]  Jing Zhang,et al.  A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries , 2016 .

[65]  M. Kaltenbrunner,et al.  Power Supply, Generation, and Storage in Stretchable Electronics , 2012 .

[66]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[67]  Prabal Sapkota,et al.  Zinc–air fuel cell, a potential candidate for alternative energy , 2009 .

[68]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[69]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[70]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[71]  Donald J. Siegel,et al.  Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future , 2015 .

[72]  Ioannis Katsounaros,et al.  Oxygen electrochemistry as a cornerstone for sustainable energy conversion. , 2014, Angewandte Chemie.

[73]  Robert J.K. Wood,et al.  Developments in electrode materials and electrolytes for aluminium-air batteries , 2013 .

[74]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[75]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[76]  D. Ivey,et al.  Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement , 2015 .

[77]  C.C. Yang,et al.  Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries , 2003 .

[78]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[79]  Xueliang Sun,et al.  Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries , 2013 .

[80]  Haegyeom Kim,et al.  Recent progress on flexible lithium rechargeable batteries , 2014 .

[81]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[82]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[83]  Maria Forsyth,et al.  Chelating ionic liquids for reversible zinc electrochemistry. , 2013, Physical chemistry chemical physics : PCCP.

[84]  Yu Song,et al.  All-solid-state Al–air batteries with polymer alkaline gel electrolyte , 2014 .

[85]  Maria Forsyth,et al.  High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration , 2012 .

[86]  Mohamad Kamal Harun,et al.  Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte , 2005 .

[87]  Chun-Chen Yang,et al.  Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery , 2002 .

[88]  Elton J. Cairns,et al.  The Secondary Alkaline Zinc Electrode , 1991 .

[89]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[90]  Chun–Chen Yang,et al.  Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes , 2006 .

[91]  Solomon Zaromb,et al.  The Use and Behavior of Aluminum Anodes in Alkaline Primary Batteries , 1962 .

[92]  Youngsik Kim,et al.  Commercial and research battery technologies for electrical energy storage applications , 2015 .

[93]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[94]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[95]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.