Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains

Probabilistic bisimilarity is an equivalence relation that captures which states of a labelled Markov chain behave the same. Since this behavioural equivalence only identifies states that transition to states that behave exactly the same with exactly the same probability, this notion of equivalence is not robust. Probabilistic bisimilarity distances provide a quantitative generalization of probabilistic bisimilarity. The distance of states captures the similarity of their behaviour. The smaller the distance, the more alike the states behave. In particular, states are probabilistic bisimilar if and only if their distance is zero. This quantitative notion is robust in that small changes in the transition probabilities result in small changes in the distances.

[1]  R. Bellman A Markovian Decision Process , 1957 .

[2]  Frits W. Vaandrager,et al.  Proof-Checking a Data Link Protocol , 1994, TYPES.

[3]  Lise Getoor,et al.  Bisimulation-based Approximate Lifted Inference , 2009, UAI.

[4]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[5]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[6]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[7]  Franck van Breugel,et al.  Computing Probabilistic Bisimilarity Distances via Policy Iteration , 2016, CONCUR.

[8]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[9]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[10]  Franck van Breugel,et al.  Algorithms to Compute Probabilistic Bisimilarity Distances for Labelled Markov Chains , 2017, CONCUR.

[11]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[12]  Kim G. Larsen,et al.  On-the-Fly Exact Computation of Bisimilarity Distances , 2013, TACAS.

[13]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[14]  Franck van Breugel,et al.  On behavioural pseudometrics and closure ordinals , 2012, Inf. Process. Lett..

[15]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[16]  Edmund M. Clarke,et al.  Characterizing Correctness Properties of Parallel Programs Using Fixpoints , 1980, ICALP.

[17]  V. Klee,et al.  FACETS AND VERTICES OF TRANSPORTATION POLYTOPES , 1967 .

[18]  James Worrell,et al.  On the Complexity of Computing Probabilistic Bisimilarity , 2012, FoSSaCS.

[19]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[20]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[21]  Kim G. Larsen,et al.  On the Metric-Based Approximate Minimization of Markov Chains , 2017, ICALP.

[22]  Christel Baier,et al.  Polynomial Time Algorithms for Testing Probabilistic Bisimulation and Simulation , 1996, CAV.

[23]  Giuliana Franceschinis,et al.  Simple O(m logn) Time Markov Chain Lumping , 2010, TACAS.

[24]  Xin Zhang,et al.  Model Checking Randomized Algorithms with Java PathFinder , 2010, 2010 Seventh International Conference on the Quantitative Evaluation of Systems.

[25]  Ezio Bartocci,et al.  Approximate Bisimulations for Sodium Channel Dynamics , 2012, CMSB.

[26]  Ted Herman,et al.  Probabilistic Self-Stabilization , 1990, Information Processing Letters.

[27]  Kim G. Larsen,et al.  Bisimulation through probabilistic testing (preliminary report) , 1989, POPL '89.

[28]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[29]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[30]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[31]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[32]  Franck van Breugel,et al.  Probabilistic bisimilarity distances , 2017, SIGL.

[33]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[34]  Alon Itai,et al.  Symmetry breaking in distributed networks , 1990, Inf. Comput..

[35]  Luca Aceto,et al.  Reactive Systems: Modelling, Specification and Verification , 2007 .