Theory and implementation of high-order adaptive hp methods for analysis of incompressible viscous flows
暂无分享,去创建一个
[1] Leszek Demkowicz,et al. Adaptive methods for problems in solid and fluid mechanics , 1986 .
[2] J. Oden,et al. The h-p adaptive finite element method for the numerical simulation of compressible flow , 1988 .
[3] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[4] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[5] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[6] J. Butcher. The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .
[7] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[8] Philippe R.B. Devloo,et al. Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes , 1986 .
[9] J. Tinsley Oden,et al. Qualitative methods in nonlinear mechanics , 1985 .
[10] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[11] Ivo Babuška,et al. The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .
[12] A. D. Gosman,et al. Two calculation procedures for steady, three-dimensional flows with recirculation , 1973 .
[13] B. Q. Guo,et al. The h-p version of the finite element method for problems with nonhomogeneous essential boundary condition , 1989 .
[14] Leszek Demkowicz,et al. Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .
[15] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[16] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[17] Urmila Ghia,et al. Analysis of incompressible massively separated viscous flows using unsteady Navier-Stokes equations , 1989 .
[18] Barna A. Szabó,et al. The use of a priori estimates in engineering computations , 1990 .
[19] Ivo Babuška,et al. Accuracy estimates and adaptive refinements in finite element computations , 1986 .
[20] J. Tinsley Oden. Smart algorithms and adaptive methods in computational fluid dynamics , 1989 .
[21] Leszek Demkowicz,et al. A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .
[22] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[23] Anthony T. Patera,et al. An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .
[24] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[25] J. T. Oden,et al. Adaptive finite element methods for high‐speed compressible flows , 1987 .
[26] Anthony T. Patera,et al. A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows , 1990 .
[27] I Babuska,et al. The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .
[28] J. Tinsley Oden,et al. Finite elements: An introduction , 1991 .
[29] Claudio Canuto,et al. To the memory of Giovanni Sacchi Landriani , 1990 .
[30] Einar M. Rønquist,et al. Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations , 1988 .
[31] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[32] J. Tinsley Oden,et al. Adaptive Finite Element Methods for Problems in Solid and Fluid Mechanics , 1988 .
[33] Barna A. Szabó,et al. The p- and h-p versions of the finite element methods in solid mechanics , 1990 .
[34] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[35] B. Szabó,et al. p‐convergent finite element approximations in fracture mechanics , 1978 .
[36] Ivo Babuška,et al. Error estimates for the combinedh andp versions of the finite element method , 1981 .
[37] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[38] J. Tinsley Oden,et al. Recent results on smart algorithms and adaptive methods for two- and three-dimensional problems in computational fluid mechanics , 1990 .
[39] Leszek Demkowicz,et al. Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .
[40] Ivo Babuška,et al. The p-Version of the Finite Element Method for Constraint Boundary Conditions. , 1988 .
[41] Ivo Babuška,et al. The optimal convergence rate of the p-version of the finite element method , 1987 .
[42] B. Szabó. Mesh design for the p-version of the finite element method , 1986 .
[43] G. Marchuk. Splitting and alternating direction methods , 1990 .
[44] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[45] Catherine Mavriplis,et al. Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques , 1989 .
[46] J. T. Oden,et al. A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .
[47] Leszek Demkowicz,et al. A new finite element method for solving compressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity , 1990 .