Theory and implementation of high-order adaptive hp methods for analysis of incompressible viscous flows

An account is given of 'smart' algorithms for CFD which change in structure and performance with during flow calculations to accommodate changing properties of the solution. Such algorithms prominently include adaptive FEM methods, which are designed to adjust mesh parameters for the control of numerical error; attention is presently given to those which change the mesh size h and the local spectral order p in order to achieve high accuracies with minimal numbers of degrees of freedom. These 'hp methods' produce exponentially convergent approximations through which flow features are resolved by automatically distributing element sizes and spectral orders. This leads to calculation of the local (elementwise) error in the approximation.

[1]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[2]  J. Oden,et al.  The h-p adaptive finite element method for the numerical simulation of compressible flow , 1988 .

[3]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[4]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[5]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[6]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[7]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[8]  Philippe R.B. Devloo,et al.  Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes , 1986 .

[9]  J. Tinsley Oden,et al.  Qualitative methods in nonlinear mechanics , 1985 .

[10]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[11]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[12]  A. D. Gosman,et al.  Two calculation procedures for steady, three-dimensional flows with recirculation , 1973 .

[13]  B. Q. Guo,et al.  The h-p version of the finite element method for problems with nonhomogeneous essential boundary condition , 1989 .

[14]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[15]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[16]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[17]  Urmila Ghia,et al.  Analysis of incompressible massively separated viscous flows using unsteady Navier-Stokes equations , 1989 .

[18]  Barna A. Szabó,et al.  The use of a priori estimates in engineering computations , 1990 .

[19]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[20]  J. Tinsley Oden Smart algorithms and adaptive methods in computational fluid dynamics , 1989 .

[21]  Leszek Demkowicz,et al.  A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .

[22]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[23]  Anthony T. Patera,et al.  An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .

[24]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[25]  J. T. Oden,et al.  Adaptive finite element methods for high‐speed compressible flows , 1987 .

[26]  Anthony T. Patera,et al.  A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows , 1990 .

[27]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[28]  J. Tinsley Oden,et al.  Finite elements: An introduction , 1991 .

[29]  Claudio Canuto,et al.  To the memory of Giovanni Sacchi Landriani , 1990 .

[30]  Einar M. Rønquist,et al.  Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations , 1988 .

[31]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[32]  J. Tinsley Oden,et al.  Adaptive Finite Element Methods for Problems in Solid and Fluid Mechanics , 1988 .

[33]  Barna A. Szabó,et al.  The p- and h-p versions of the finite element methods in solid mechanics , 1990 .

[34]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[35]  B. Szabó,et al.  p‐convergent finite element approximations in fracture mechanics , 1978 .

[36]  Ivo Babuška,et al.  Error estimates for the combinedh andp versions of the finite element method , 1981 .

[37]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[38]  J. Tinsley Oden,et al.  Recent results on smart algorithms and adaptive methods for two- and three-dimensional problems in computational fluid mechanics , 1990 .

[39]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[40]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Constraint Boundary Conditions. , 1988 .

[41]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[42]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[43]  G. Marchuk Splitting and alternating direction methods , 1990 .

[44]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[45]  Catherine Mavriplis,et al.  Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques , 1989 .

[46]  J. T. Oden,et al.  A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .

[47]  Leszek Demkowicz,et al.  A new finite element method for solving compressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity , 1990 .