Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction

[1]  C. Claver,et al.  Effect of pH on catalyst activity and selectivity in the aqueous Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles , 2015 .

[2]  C. Claver,et al.  Correlation between Hydrocarbon Product Distribution and Solvent Composition in the Fischer–Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanoparticles , 2015 .

[3]  K. P. Jong,et al.  Deactivation Behavior of Co/TiO2 Catalysts during Fischer–Tropsch Synthesis , 2015 .

[4]  R. A. Santen,et al.  Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction , 2014 .

[5]  J. Dupont,et al.  Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction-sulfidation processes and Fischer-Tropsch catalysis. , 2014, Nanoscale.

[6]  Y. Kou,et al.  Aqueous-phase Fischer-Tropsch synthesis catalyzed by cobalt nanoparticles , 2013 .

[7]  W. Shafer,et al.  Aqueous-Phase Fischer–Tropsch Synthesis: Effect of Reaction Temperature on Ruthenium Nanoparticle Catalyst and Comparison with Supported Ru and Co Catalysts , 2013, Catalysis Letters.

[8]  M. Housaindokht,et al.  Fischer–Tropsch Synthesis Over CNT Supported Cobalt Catalysts: Role of Metal Nanoparticle Size on Catalyst Activity and Products Selectivity , 2013, Catalysis Letters.

[9]  C. Claver,et al.  Novel Polymer Stabilized Water Soluble Ru-Nanoparticles as Aqueous Colloidal Fischer–Tropsch Catalysts , 2013, Topics in Catalysis.

[10]  N. R. Shiju,et al.  De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts. , 2013, Angewandte Chemie.

[11]  S. Pennycook,et al.  Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis. , 2013, Journal of the American Chemical Society.

[12]  W. Xie,et al.  Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes , 2012, Science China Chemistry.

[13]  Huabo Zhao,et al.  The effects of ionic additives on the aqueous-phase Fischer–Tropsch synthesis with a ruthenium nanoparticle catalyst , 2012 .

[14]  Ding Ma,et al.  Aqueous phase Fischer–Tropsch synthesis in a continuous flow reactor , 2012 .

[15]  Kyoung‐Su Ha,et al.  Fischer–Tropsch catalysts deposited with size-controlled Co3O4 nanocrystals: Effect of Co particle size on catalytic activity and stability , 2012 .

[16]  E. Hensen,et al.  Unprecedented Oxygenate Selectivity in Aqueous‐Phase Fischer–Tropsch Synthesis by Ruthenium Nanoparticles , 2011 .

[17]  Jie Chang,et al.  Effect of boron promotion on the stability of cobalt Fischer–Tropsch catalysts , 2011 .

[18]  Qinghong Zhang,et al.  Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity , 2010 .

[19]  E. Vallés,et al.  Synthesis and characterization of Co@Ag core–shell nanoparticles , 2010 .

[20]  Jie Chang,et al.  Improving the stability of cobalt Fischer-Tropsch catalysts by Boron promotion , 2010 .

[21]  F. Liu,et al.  Liquid-phase Fischer–Tropsch synthesis over Fe nanoparticles dispersed in polyethylene glycol (PEG) , 2010 .

[22]  A. Dalai,et al.  Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions , 2010 .

[23]  N. Yan,et al.  One-step synthesis of 2-alkyl-dioxolanes from ethylene glycol and syngas. , 2009, ChemSusChem.

[24]  P. Concepción,et al.  Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts , 2009 .

[25]  N. Yan,et al.  Solubility adjustable nanoparticles stabilized by a novel PVP based family: synthesis, characterization and catalytic properties. , 2009, Chemical communications.

[26]  A. Khodakov,et al.  Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance , 2009 .

[27]  K. Jun,et al.  Slurry-Phase Fischer–Tropsch Synthesis Using Co/γ-Al2O3, Co/SiO2 and Co/TiO2: Effect of Support on Catalyst Aggregation , 2009 .

[28]  Mark Saeys,et al.  Effect of boron on the stability of Ni catalysts during steam methane reforming , 2009 .

[29]  J. Dupont,et al.  Cobalt nanocubes in ionic liquids: synthesis and properties. , 2008, Angewandte Chemie.

[30]  E. F. Souza-Aguiar,et al.  Catalytic gas-to-liquid processing using cobalt nanoparticles dispersed in imidazolium ionic liquids. , 2008, ChemSusChem.

[31]  N. Yan,et al.  Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst. , 2008, Angewandte Chemie.

[32]  J. Dalmon,et al.  Cobalt Fischer-Tropsch synthesis : deactivation by oxidation? , 2007 .

[33]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[34]  Jing Xu,et al.  Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron , 2006 .

[35]  Yi Zhang,et al.  The surface modification effects of silica support by organic solvents for Fischer–Tropsch synthesis catalysts , 2006 .

[36]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[37]  Qinghong Zhang,et al.  Cobalt nanoparticles prepared in faujasite zeolites by borohydride reduction , 2005 .

[38]  M. Pileni,et al.  Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. , 2005, The journal of physical chemistry. B.

[39]  M. Dry,et al.  Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. , 2005, The journal of physical chemistry. B.

[40]  Yuhan Sun,et al.  Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis , 2003 .

[41]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[42]  Hiroaki Takahashi,et al.  Catalytic performances of cobalt-based ultrafine particles prepared by chemical reduction in slurry-phase Fischer–Tropsch synthesis , 1999 .

[43]  Jinlin Li,et al.  The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer–Tropsch catalysts , 1999 .

[44]  K. P. Jong,et al.  On the origin of the cobalt particle size effect in the fischer-tropsch synthesis , 2007 .

[45]  C. Lok Novel highly dispersed cobalt catalysts for improved Fischer-Tropsch productivity , 2004 .

[46]  G. Hadjipanayis,et al.  Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles , 1993 .

[47]  K. P. Jong Deposition Precipitation Onto Pre-Shaped Carrier Bodies. Possibilities and Limitations , 1991 .

[48]  Hanfan Liu,et al.  A new method for immobilization of polymer-protective colloidal platinum metals via co-ordination capture with anchored ligands. Synthesis of the first example of a mercapto-containing supported metallic catalyst for hydrogenation of alkenes with high activity , 1989 .