R 5-Tropic Strains of HIV-1 Macrophages and Lymphocytes with Primary Normal Human IgG Block Infection of Antibodies to C-C Chemokine Receptor 5 in Kaveri and

[1]  G. Fields,et al.  Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. , 2009, International journal of peptide and protein research.

[2]  S. Kaveri,et al.  Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. , 2001, The New England journal of medicine.

[3]  L. Lopalco,et al.  CCR5-Reactive Antibodies in Seronegative Partners of HIV-Seropositive Individuals Down-Modulate Surface CCR5 In Vivo and Neutralize the Infectivity of R5 Strains of HIV-1 In Vitro1 , 2000, The Journal of Immunology.

[4]  Tahir A. Rizvi,et al.  Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection , 2000, Nature Medicine.

[5]  R. Zinkernagel,et al.  Control of early viral and bacterial distribution and disease by natural antibodies. , 1999, Science.

[6]  D. Richman,et al.  Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. , 1999, Science.

[7]  J. Silver,et al.  Positive selection of natural autoreactive B cells. , 1999, Science.

[8]  S. Kaveri,et al.  Inhibition of cell adhesion by antibodies to Arg-Gly-Asp (RGD) in normal immunoglobulin for therapeutic use (intravenous immunoglobulin, IVIg). , 1999, Blood.

[9]  William C. Olson,et al.  Differential Inhibition of Human Immunodeficiency Virus Type 1 Fusion, gp120 Binding, and CC-Chemokine Activity by Monoclonal Antibodies to CCR5 , 1999, Journal of Virology.

[10]  J. Wakefield,et al.  Vpx is required for dissemination and pathogenesis of SIVSM PBj: Evidence of macrophage-dependent viral amplification , 1998, Nature Medicine.

[11]  B. Walker,et al.  Acute human immunodeficiency virus type 1 infection. , 1998, The New England journal of medicine.

[12]  A. Coutinho,et al.  Self-reactive antibodies (natural autoantibodies) in healthy individuals. , 1998, Journal of immunological methods.

[13]  J. Reece,et al.  HIV-1 Selection by Epidermal Dendritic Cells during Transmission across Human Skin , 1998, The Journal of experimental medicine.

[14]  K. Bendtzen,et al.  High-avidity autoantibodies to cytokines. , 1998, Immunology today.

[15]  D R Burton,et al.  The CCR5 receptor acts as an alloantigen in CCR5Delta32 homozygous individuals: identification of chemokineand HIV-1-blocking human antibodies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Koup,et al.  The HIV type 1 coreceptor CCR5 and its role in viral transmission and disease progression. , 1998, AIDS research and human retroviruses.

[17]  Luc Montagnier,et al.  HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene , 1998, The Lancet.

[18]  A. Trkola,et al.  Co-receptors for HIV-1 entry. , 1997, Current opinion in immunology.

[19]  Jean Salamero,et al.  HIV Coreceptor Downregulation as Antiviral Principle: SDF-1α–dependent Internalization of the Chemokine Receptor CXCR4 Contributes to Inhibition of HIV Replication , 1997, The Journal of experimental medicine.

[20]  Nancy Sullivan,et al.  CCR5 Levels and Expression Pattern Correlate with Infectability by Macrophage-tropic HIV-1, In Vitro , 1997, The Journal of experimental medicine.

[21]  R. Royce,et al.  Sexual transmission of HIV. , 1997, The New England journal of medicine.

[22]  R. Connor,et al.  Change in Coreceptor Use Correlates with Disease Progression in HIV-1–Infected Individuals , 1997, The Journal of experimental medicine.

[23]  Steven M. Wolinsky,et al.  The role of a mutant CCR5 allele in HIV–1 transmission and disease progression , 1996, Nature Medicine.

[24]  John P. Moore,et al.  Perspective: Research Highlights at the Aaron Diamond AIDS Research Center: The β-Chemokines, HIV Type 1 Second Receptors, and Exposed Uninfected Persons , 1996 .

[25]  Richard A Koup,et al.  Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection , 1996, Cell.

[26]  Stephen C. Peiper,et al.  Identification of a major co-receptor for primary isolates of HIV-1 , 1996, Nature.

[27]  S. Kaveri,et al.  Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. , 1996, The Journal of clinical investigation.

[28]  D. Klatzmann,et al.  Anti-CD4 activity of normal human immunoglobulin G for therapeutic use. (Intravenous immunoglobulin, IVIg). , 1994, Therapeutic immunology.

[29]  J. Cairns,et al.  Chemokines and HIV-1 second receptors: The therapeutic connection , 1998, Nature Medicine.

[30]  J. Moore,et al.  The beta-chemokines, HIV type 1 second receptors, and exposed uninfected persons. , 1996, AIDS research and human retroviruses.

[31]  A. Coutinho,et al.  Natural autoantibodies. , 1995, Current opinion in immunology.

[32]  S. Avrameas,et al.  Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. , 1991, Immunology today.