The Convergence of the Navier–Stokes–Poisson System to the Incompressible Euler Equations

ABSTRACT The combining quasineutral and inviscid limit of the Navier–Stokes–Poisson system in the torus 𝕋 d , d ≥ 1 is studied. The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations is proven for the global weak solution and for the case of general initial data.

[1]  Emmanuel Grenier,et al.  Defect measures of the vlasov-poisson system in the quasineutral regime , 1995 .

[2]  N. Masmoudi FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .

[3]  D. Hoff The Zero-Mach Limit of Compressible Flows , 1998 .

[4]  F. J. McGrath Nonstationary plane flow of viscous and ideal fluids , 1968 .

[5]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[6]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[7]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[8]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[9]  Emmanuel Grenier Oscillations in quasineutral plasmas , 1996 .

[10]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[11]  Ni e Cedex A Hierarchy of Hydrodynamic Models for Plasmas. Quasi-Neutral Limits in the Drift-Diffusion Equations , 1999 .

[12]  Existence globale pour un fluide barotrope autogravitant , 2001 .

[13]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[14]  N. Masmoudi Ekman layers of rotating fluids: The case of general initial data , 2000 .

[15]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[16]  Ling Hsiao,et al.  Quasi-neutral Limit of a Nonlinear Drift Diffusion Model for Semiconductors , 2002 .

[17]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[18]  C. Schmeiser,et al.  Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit , 1995 .

[19]  Peter A. Markowich,et al.  Quasi-neutral Limit of the Drift Diffusion Models for Semiconductors: The Case of General Sign-Changing Doping Profile , 2006, SIAM J. Math. Anal..

[20]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[21]  Zhouping Xin,et al.  Mathematical modelling of microelectronics semiconductor devices , 2000 .

[22]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[23]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[24]  Christian Schmeiser,et al.  QUASINEUTRAL LIMIT OF THE DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS WITH GENERAL INITIAL DATA , 2003 .

[25]  Shu Wang,et al.  Quasineutral Limit of Euler–Poisson System with and without Viscosity , 2005 .

[26]  Ansgar Jüngel,et al.  Convergence of Nonlinear Schrödinger–Poisson Systems to the Compressible Euler Equations , 2003 .

[27]  Eduard Feireisl,et al.  On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable , 2001 .

[28]  N. Masmoudi Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .

[29]  Christian Schmeiser,et al.  The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model , 2001, European Journal of Applied Mathematics.

[30]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[31]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .