The Convergence of the Navier–Stokes–Poisson System to the Incompressible Euler Equations
暂无分享,去创建一个
Song Jiang | Shu Wang | Song Jiang | Shu Wang
[1] Emmanuel Grenier,et al. Defect measures of the vlasov-poisson system in the quasineutral regime , 1995 .
[2] N. Masmoudi. FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .
[3] D. Hoff. The Zero-Mach Limit of Compressible Flows , 1998 .
[4] F. J. McGrath. Nonstationary plane flow of viscous and ideal fluids , 1968 .
[5] S. Ukai. The incompressible limit and the initial layer of the compressible Euler equation , 1986 .
[6] P. Lions,et al. Incompressible limit for a viscous compressible fluid , 1998 .
[7] E. Grenier. Pseudo-differential energy estimates of singular perturbations , 1997 .
[8] A. Majda,et al. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .
[9] Emmanuel Grenier. Oscillations in quasineutral plasmas , 1996 .
[10] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[11] Ni e Cedex. A Hierarchy of Hydrodynamic Models for Plasmas. Quasi-Neutral Limits in the Drift-Diffusion Equations , 1999 .
[12] Existence globale pour un fluide barotrope autogravitant , 2001 .
[13] Pierre-Louis Lions,et al. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .
[14] N. Masmoudi. Ekman layers of rotating fluids: The case of general initial data , 2000 .
[15] Tosio Kato. Nonstationary flows of viscous and ideal fluids in R3 , 1972 .
[16] Ling Hsiao,et al. Quasi-neutral Limit of a Nonlinear Drift Diffusion Model for Semiconductors , 2002 .
[17] Y. Brenier,et al. convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .
[18] C. Schmeiser,et al. Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit , 1995 .
[19] Peter A. Markowich,et al. Quasi-neutral Limit of the Drift Diffusion Models for Semiconductors: The Case of General Sign-Changing Doping Profile , 2006, SIAM J. Math. Anal..
[20] S. Schochet. Fast Singular Limits of Hyperbolic PDEs , 1994 .
[21] Zhouping Xin,et al. Mathematical modelling of microelectronics semiconductor devices , 2000 .
[22] E. Grenier. Oscillatory perturbations of the Navier Stokes equations , 1997 .
[23] H. Swann. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .
[24] Christian Schmeiser,et al. QUASINEUTRAL LIMIT OF THE DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS WITH GENERAL INITIAL DATA , 2003 .
[25] Shu Wang,et al. Quasineutral Limit of Euler–Poisson System with and without Viscosity , 2005 .
[26] Ansgar Jüngel,et al. Convergence of Nonlinear Schrödinger–Poisson Systems to the Compressible Euler Equations , 2003 .
[27] Eduard Feireisl,et al. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable , 2001 .
[28] N. Masmoudi. Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .
[29] Christian Schmeiser,et al. The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model , 2001, European Journal of Applied Mathematics.
[30] E. Grenier,et al. Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .
[31] E. Feireisl,et al. On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .