Non linear hyperbolic fields and waves
暂无分享,去创建一个
[1] P. Dirac. Relativistic Wave Equations , 1936 .
[2] M. Born. Quantum theory of the electromagnetic field , 1934 .
[3] N. N. Bogoliubov,et al. Introduction to the theory of quantized fields , 1960 .
[4] Lev Davidovich Landau,et al. Mécanique des fluides , 1989 .
[5] J. Marsden,et al. The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I , 1972 .
[6] H. Tze. Born duality and strings in hadrodynamics and electrodynamics , 1974 .
[7] C. Moller,et al. The Theory of Relativity , 1953, The Mathematical Gazette.
[8] Tommaso Ruggeri,et al. Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions , 1997 .
[9] I-Shih Liu,et al. Method of Lagrange multipliers for exploitation of the entropy principle , 1972 .
[10] G. Rowlands,et al. Nonlinear Waves, Solitons and Chaos , 1990 .
[11] Tai-Ping Liu. Admissible solutions of hyperbolic conservation laws , 1981 .
[12] G. Velo,et al. PROPAGATION AND QUANTIZATION OF RARITA--SCHWINGER WAVES IN AN EXTERNAL ELECTROMAGNETIC POTENTIAL. , 1969 .
[13] R. E. Street,et al. High-Speed Aerodynamics , 1956 .
[14] A. Taub. General relativistic shock waves in fluids for which pressure equals energy density , 1973 .
[15] Guy Boillat,et al. Onde eccezionali in mezzi iperelastici con deformazioni finite piane , 1984 .
[16] C. Dafermos. Generalized characteristics in hyperbolic systems of conservation laws , 1989 .
[17] G. Boillat. A relativistic fluid in which shock fronts are also wave surfaces , 1974 .
[18] C. Dafermos. Admissible Wave Fans in Nonlinear Hyperbolic Systems , 1989 .
[19] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[20] A. Strumia. Einstein equations, relativistic strings and Born-Infeld electrodynamics , 1995 .
[21] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[22] G. Valenti,et al. Exceptionality Condition and Linearization Procedure for a Third Order Nonlinear PDE , 1994 .
[23] A. M. Anile,et al. Relativistic Fluid Dynamics , 1989 .
[24] Tommaso Ruggeri,et al. Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics , 1981 .
[25] John K. Hunter,et al. Weakly nonlinear high frequency waves , 1983 .
[26] S. Friedland,et al. On the Crossing Rule , 1984 .
[27] C. Rogers,et al. The (3+1)-dimensional Monge-Ampère equation in discontinuity wave theory: Application of a reciprocal transformation , 1992 .
[28] H. Freistühler. Linear degeneracy and shock waves , 1991 .
[29] G. Boillat. Ondes asymptotiques non linéaires , 1976 .
[30] Peter D. Lax,et al. Development of Singularities of Solutions of Nonlinear Hyperbolic Partial Differential Equations , 1964 .
[31] S. Pennisi. A covariant and extended model for relativistic magnetofluiddynamics , 1993 .
[32] C. Cercignani,et al. Analysis of thermal and shear waves according to BKG kinetic model , 1985 .
[33] Angelo Marcello Anile,et al. Relativistic fluids and magneto-fluids , 2005 .
[34] T. Ruggeri,et al. On the evolution law of weak discontinuities for hyperbolic quasi-linear systems , 1979 .
[35] Constantine M. Dafermos. Quasilinear Hyperbolic Systems with Involutions , 1986 .
[36] Albert Einstein,et al. Briefwechsel, 1916-1955 , 1969 .
[37] K. Friedrichs. Symmetric hyperbolic linear differential equations , 1954 .
[38] J. Mandel,et al. Mechanical waves in solids , 1975 .
[39] Morton E. Gurtin,et al. Six Lectures on Modern Natural Philosophy , 1966 .
[40] A. H. Taub,et al. Relativistic Rankine-Hugoniot Equations , 1948 .
[41] Ruggeri,et al. Shock waves and second sound in a rigid heat conductor: A critical temperature for NaF and Bi. , 1990, Physical review letters.
[42] Max Born,et al. Foundations of the new field theory , 1934 .
[43] W. A. Green. The growth of plane discontinuities propagating into a homogeneously deformed elastic material , 1964 .
[44] H. Arzeliès. Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques , 1965 .
[45] H. Ott. Lorentz-Transformation der Wärme und der Temperatur , 1963 .
[46] P. Carbonaro. Exceptional relativistic gas dynamics , 1988 .
[47] Marco Sammartino,et al. A thermodynamical approach to Eddington factors , 1991 .
[48] A. Strumia. Main field and symmetric-hyperbolic form of the dirac equation , 1983 .
[49] T. Ruggeri,et al. Symmetric form of nonlinear mechanics equations and entropy growth across a shock , 1980 .
[50] Entropy and causality as criteria for the existence of shock waves in low temperature heat conduction , 1992 .
[51] L. Lustman. A Note on Nonbreaking Waves in Hyperelastic Materials , 1980 .
[52] L. Seccia. Shock wave propagation and admissibility criteria in a nonlinear dielectric medium , 1995 .
[53] Science and Engineering. (Book Reviews: Non-Linear Wave Propagation. With applications to physics and magnetohydrodynamics) , 1964 .
[54] A. Muracchini,et al. On the symmetric conservative form of Landau's superfluid equations , 1984 .
[55] G. Grioli. On the thermodynamic potential for continuums with reversible transformations-some possible types , 1966 .
[56] P. Lax. The multiplicity of eigenvalues , 1982 .
[57] Guy Boillat,et al. La propagation des ondes , 1965 .
[58] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[59] S. K. Godunov,et al. THE PROBLEM OF A GENERALIZED SOLUTION IN THE THEORY OF QUASILINEAR EQUATIONS AND IN GAS DYNAMICS , 1962 .
[60] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[61] A. Muracchini,et al. Characteristic shocks of crossing velocities in magnetohydrodynamics , 1996 .
[62] R. Courant,et al. THE PROPAGATION OF DISCONTINUITIES IN WAVE MOTION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.
[63] T. Ruggeri,et al. Reflection and transmission of discontinuity waves through a shock wave. General theory including also the case of characteristic shocks , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[64] W. Israel. Relativistic theory of shock waves , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[65] A. Jeffrey. The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables , 1963 .
[66] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[67] G. Boillat. Shock relations in nonlinear electrodynamics , 1972 .
[68] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[69] G. Darmois,et al. Théories relativistes de la gravitation et de l'électromagnétisme : relativisté générale et théories unitaires , 1955 .
[70] F. Oliveri,et al. Linearization of completely exceptional second order hyperbolic conservative equations , 1995 .
[71] James Eells,et al. PERSPECTIVES IN NONLINEARITY , 1970 .
[72] B. S'evennec. G'eom'etrie des syst`emes hyperboliques de lois de conservation , 1994 .
[73] Non-equilibrium properties of solids obtained from second-sound measurements , 1988 .
[74] A. M. Anile,et al. On the mathematical structure of test relativistic magnetofluiddynamics , 1987 .
[75] P. Germain. Shock Waves, Jump Relations, and Structure , 1972 .
[76] Constance Reid,et al. Courant in Göttingen and New York : the story of an improbable mathematician , 1977 .
[77] I. Müller. The coldness, a universal function in thermoelastic bodies , 1971 .
[78] G. Boillat. On symmetrization of partial differential systems , 1995 .
[79] Gabriel Nagy,et al. The behavior of hyperbolic heat equations' solutions near their parabolic limits , 1994 .
[80] W. Heisenberg,et al. Folgerungen aus der Diracschen Theorie des Positrons , 1936 .
[81] G. Boillat. Sur l'équation générale de Monge-Ampère d'ordre supérieur , 1992 .
[82] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[83] Guy Boillat,et al. Nonlinear Electrodynamics: Lagrangians and Equations of Motion , 1970 .
[84] P. Lax. Shock Waves and Entropy , 1971 .
[85] A. Strumia. A detailed study of entropy jump across shock waves in relativistic fluid dynamics , 1986 .
[86] P. Lax. The Initial Value Problem for Nonlinear Hyperbolic Equations in Two Independent Variables , 1954 .
[87] G. Boillat. Sur l'équation générale de Monge-Ampère à plusieurs variables , 1991 .
[88] Constantine M. Dafermos,et al. The Riemann problem for certain classes of hyperbolic systems of conservation laws , 1976 .
[89] Peter D. Lax,et al. Asymptotic solutions of oscillatory initial value problems , 1957 .
[90] É. Goursat,et al. Cours d'analyse mathématíque , 1919 .
[91] Guy Boillat,et al. Sopra l'iperbolicità dei sistemi con vincoli e considerazioni sul superfluido e la magnetoidrodinamica , 1985 .
[92] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[93] Peter Salamon,et al. Advances in thermodynamics , 1990 .
[94] Alan Jeffrey,et al. Quasilinear hyperbolic systems and waves , 1976 .
[95] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[96] Barbara Lee Keyfitz,et al. A system of non-strictly hyperbolic conservation laws arising in elasticity theory , 1980 .
[97] G. Boillat. Exact plane-wave solution of Born-Infeld electrodynamics , 1972 .
[98] P. Lax,et al. Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[99] Harold M. Edwards,et al. Courant in Göttingen and New York: By Constance Reid. New York, Heidelberg, Berlin (Springer-Verlag). 1976. 314 pp , 1977 .
[100] A. Jeffrey,et al. Formation of shock waves in hyperelastic solids , 1974 .
[101] L. Brun. Ondes de Choc Finies Dans les Solides Elastiques , 1975 .
[102] J. H. Olsen,et al. Large-amplitude unsteady flow in liquid-filled elastic tubes , 1967, Journal of Fluid Mechanics.
[103] G. Boillat. Covariant disturbances and exceptional waves , 1973 .