Effects of Reaction Wood on the Performance of Wood and Wood-Based Products

Compression wood in softwoods and tension wood in hardwoods have properties, which adversely affect its usefulness for wood products. This chapter shows that reaction wood can be associated with many unsuitable wood properties. The results vary due to the fact that definitions about occurrence and severity of reaction wood are scarcely documented. A few properties seem to be even benefitting from the presence of reaction wood: the higher smoothness of compression wood surfaces, better shear strength of compression wood, higher toughness and impact resistance when tension wood is present, lower water uptake and swelling in fibreboards containing compression wood, and higher durability against fungi of compression wood. However, these are outweighed by disadvantages, which is the reason why reaction wood has a bad reputation in industry. The problem with reaction wood is that it is in most cases mixed with normal wood, which leads to non-uniform and more variable properties. This may lead to non-uniform swelling and shrinking, causing distortions, with additional problems of reduced strength and unfavourable surface properties. Wood-based materials such as particle boards or fibreboards are generally less prone to problems associated with reaction wood than solid wood products. With knowledge-based production methods the utilization of different wood types, including reaction wood, might be feasible.

[1]  H. J. Zhang,et al.  Compression control and its significance in the manufacture and effects on properties of poplar LVL , 1994, Wood Science and Technology.

[2]  T. E. Timell Compression Wood in Gymnosperms , 1986 .

[3]  J. Dinwoodie Growth Stresses in Timber—A Review of Literature , 1966 .

[4]  C. Hill,et al.  Wood Modification: Chemical, Thermal and Other Processes , 2006 .

[5]  S. Ates,et al.  Effects of heat treatment on calabrian pine (Pinus brutia Ten.) wood. , 2009 .

[6]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[7]  Changquan Calvin Sun,et al.  True density of microcrystalline cellulose. , 2005, Journal of pharmaceutical sciences.

[8]  George E. Woodson,et al.  Fiberboard manufacturing practices in the United States , 1987 .

[9]  R. Wimmer,et al.  A COMPARISON OF TREE-RING FEATURES IN PICEA ABIES AS CORRELATED WITH CLIMATE , 2000 .

[10]  S. Shi,et al.  Wood-based composites: plywood and veneer-based products , 2006 .

[11]  Stephen Emmitt,et al.  Specifying Buildings:a Design Management Perspective (2nd ed.) , 2008 .

[12]  Alfred Teischinger,et al.  Longitudinal shear properties of European larch wood related to cell-wall structure , 2007 .

[13]  Hiroyuki Yamamoto,et al.  Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species , 2011, Wood Science and Technology.

[14]  T. E. Timell,et al.  Studies on Larch Arabinogalactan. I. The Distribution of Arabinogalactan in Larch Wood , 1966 .

[15]  P. Perré,et al.  Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies , 2009, Wood Science and Technology.

[16]  N. Ayrilmis,et al.  Effect of compression wood on dimensional stability of medium density fiberboard , 2008 .

[17]  J. Dunlop,et al.  Experimental micromechanical characterisation of wood cell walls , 2012, Wood Science and Technology.

[18]  T. Constant,et al.  Assessment of tension wood detection based on shiny appearance for three poplar cultivars , 2005 .

[19]  D. G. Arganbright,et al.  Influence of gelatinous fibers on the shrinkage of silver maple , 1970 .

[20]  R. Zabel,et al.  Wood Microbiology: Decay and Its Prevention , 1993 .

[21]  P. Perré,et al.  Viscoelastic behaviour of green wood across the grain. Part I. Thermally activated creep tests up to 120 °C , 2005 .

[22]  J. Boyd Relationships between fibre morphology, growth strains and physical properties of wood. , 1980 .

[23]  T. Helle,et al.  Assessment of transverse dimensions of wood tracheids using SEM and image analysis , 2002, Holz als Roh- und Werkstoff.

[24]  C. Skaar Water in wood , 1972 .

[25]  Turgay Akbulut,et al.  Effect of compression wood on surface roughness and surface absorption of medium density fiberboard , 2006 .

[26]  N. Ayrilmis,et al.  Effect of panel density on dimensional stability of medium and high density fiberboards , 2007 .

[27]  J. Ilic,et al.  Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill , 2001, Holz als Roh- und Werkstoff.

[28]  L. Lucia,et al.  Evaluation of the pulping response of juvenile and mature black spruce compression wood , 2004 .

[29]  R. E. Mark Cell Wall Mechanics of Tracheids , 1967 .

[30]  Jun Li Shi,et al.  Mechanical behaviour of Québec wood species heat-treated using ThermoWood process , 2007, Holz als Roh- und Werkstoff.

[31]  P. Kettunen Wood: Structure and Properties , 2006 .

[32]  M. Warensjö,et al.  Stem Straightness and Compression Wood in a 22-Year-Old Stand of Container-Grown Scots Pine Trees , 2004 .

[33]  George Jeronimidis,et al.  Wood Quality and its Biological Basis , 2003 .

[34]  D. Kretschmann,et al.  Achievements in the utilization of poplar wood – guideposts for the future , 2001 .

[35]  J. Ilic,et al.  The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. , 2003, Holz als Roh- und Werkstoff.

[36]  Donald Garlotta,et al.  A Literature Review of Poly(Lactic Acid) , 2001 .

[37]  A. Leclercq,et al.  ANATOMICAL CHARACTERISTICS OF TENSION WOOD AND OPPOSITE WOOD IN YOUNG INCLINED STEMS OF POPLAR (POPULUS EURAMERICANA CV 'GHOY') , 2001 .

[38]  B. Gartner,et al.  Compression wood has little impact on the water relations of Douglas-fir (Pseudotsuga menziesii) seedlings despite a large effect on shoot hydraulic properties. , 2002, The New phytologist.

[39]  M. Ramiah,et al.  The thermal expansion of cellulose, hemicellulose, and lignin , 1966 .

[40]  B. Ozarska,et al.  A review of the utilisation of hardwoods for LVL , 1999, Wood Science and Technology.

[41]  R. W. Wolfe,et al.  Dowel-nut connection in Douglas-fir peeler cores. , 2000 .

[42]  Bernard Thibaut,et al.  Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species , 2007, Annals of Forest Science.

[43]  Türker Dündar,et al.  EFFECT OF HEAT TREAMENT ON THE PHYSICAL AND MECHANICAL PROPERTIES OF COMPRESSION AND OPPOSITE WOOD OF BLACK PINE , 2012 .

[44]  R. Wimmer,et al.  Prediction of natural durability of commercial available European and Siberian larch by near-infrared spectroscopy , 2006 .

[45]  C. Frihart Wood Adhesion and Adhesives , 2012 .

[46]  L. Lucia,et al.  Chemical Study of the Variation in the Bleaching and Pulping Response of Predominantly Juvenile and Mature Northern Black Spruce Fractions , 2005 .

[47]  G. Jayme,et al.  Zugholz und seine Auswirkungen in Pappel- und Weidenholz , 1953 .

[48]  Gerhard Schickhofer,et al.  Development of high-performance strand boards: multiscale modeling of anisotropic elasticity , 2010, Wood Science and Technology.

[49]  U. Müller,et al.  Adhesive bond strength of end grain joints in softwood with varying density , 2008 .

[50]  Changhua Fang,et al.  Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain , 2007, Wood Science and Technology.

[51]  R. K. Bamber A GENERAL THEORY FOR THE ORIGIN OF GROWTH STRESSES IN REACTION WOOD: HOW TREES STAY UPRIGHT , 2001 .

[52]  J. Isebrands,et al.  Properties, processing and utilization. , 2014 .

[53]  R. Wimmer,et al.  Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis , 2009 .

[54]  E. Roffael,et al.  Zur Bedeutung von schnellwüchsigen Baumarten als Rohmaterial für die Holzwerkstoffherstellung unter besonderer Berücksichtigung von Pappelholz für Spanplatten , 1988, Holz als Roh- und Werkstoff.

[55]  Bernard Thibaut,et al.  SHRINKAGE OF THE GELATINOUS LAYER OF POPLAR AND BEECH TENSION WOOD , 2001 .

[56]  W. Jomaa,et al.  Causes of color changes in wood during drying , 2010 .

[57]  Changhua Fang,et al.  Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55) , 2008, Annals of Forest Science.

[58]  G. Downes,et al.  WITHIN-TREE VARIATION IN ANATOMICAL PROPERTIES OF COMPRESSION WOOD IN RADIATA PINE , 2004 .

[59]  P. Perré Experimental device for the accurate determination of wood-water relations on micro-samples , 2007 .

[60]  H. Schulz,et al.  Grundriss der Forstbenutzung : Entstehung, Eigenschaften, Verwertung und Verwendung des Holzes und anderer Forstprodukte , 1966 .

[61]  Stephen Emmitt,et al.  Specifying Buildings: A design management perspective , 2001 .

[62]  Robert Evans,et al.  Relationships between Density, Shrinkage, Extractives Content and Microfibril Angle in Tension Wood from Three Provenances of 10-Year-Old Eucalyptus globulus Labill , 2001 .

[63]  A. Leclercq,et al.  Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus , 2001 .

[64]  G. Valentin,et al.  A study on growth stresses, tension wood distribution and other related wood defects in poplar (Populus euramericana cv 1214): end splits, specific gravity and pulp yield , 1994 .

[65]  Turgay Akbulut,et al.  Effects of panel density, panel temperature, and cutter sharpness during edge machining on the roughness of the surface and profiled areas of medium density fiberboard , 2004 .

[66]  E. Schwab,et al.  Beziehungen zwischen den Rohstoff-Eigenschaften und den Anforderungen der Verwendung , 1977, Holz als Roh- und Werkstoff.

[67]  Lennart Salmén,et al.  Micromechanical understanding of the cell-wall structure. , 2004, Comptes rendus biologies.

[68]  Robert A. Blanchette,et al.  Biodegradation of Compression Wood and Tension Wood by White and Brown Rot Fungi , 1994 .

[69]  Marie Johansson,et al.  Prediction of Bow and Crook in Timber Studs Based on Variation in Longitudinal Shrinkage , 2007 .

[70]  J. R. Sprague,et al.  Juvenile Wood in Forest Trees , 1998, Springer Series in Wood Science.

[71]  D. Vansteenkiste,et al.  End-use related physical and mechanical properties of selected fast-growing poplar hybrids (Populus trichocarpa × P. deltoides) , 2007, Annals of Forest Science.

[72]  R. Geimer,et al.  Influence of Juvenile Wood on Dimensional Stability and Tensile Properties of Flakeboard , 2007 .

[73]  G. Gellerstedt,et al.  Variation in content and composition of lignin in young wood of Norway spruce , 2004 .

[74]  R. Wool,et al.  Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites , 2004 .

[75]  Junji Sugiyama,et al.  On the detachment of gelatinous layer in tension wood fiber , 2020 .

[76]  J. Bristow,et al.  Paper Structure and Properties , 1986 .

[77]  C. Carrington,et al.  THE INFLUENCE OF COMPRESSION WOOD ON THE DRYING CURVES OF PINUS RADIATA DRIED IN DEHUMIDIFIER CONDITIONS , 2002 .

[78]  J. C. F. Walker,et al.  Primary Wood Processing , 1993, Springer Netherlands.

[79]  D. Kretschmann,et al.  Ultimate Tensile Stress and Modulus of Elasticity of Fast-Grown Plantation Loblolly Pine Lumber , 2007 .

[80]  Ulrich Müller,et al.  Ammonia vs. thermally modified timber—comparison of physical and mechanical properties , 2011, European Journal of Wood and Wood Products.

[81]  M. Azadfallah,et al.  Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood. , 2009 .

[82]  P. Perré,et al.  Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. , 2009 .

[83]  T. Seifert,et al.  Erkennung und Messung des Reaktionsholzes bei Fichte (Picea abies (L.) Karst.) mittels Verfahren der digitalen Bildanalyse , 2004, Holz als Roh- und Werkstoff.

[84]  Nicholls Jwp Wind action, leaning trees and compression wood in Pinus radiata D. Don. , 1982 .

[85]  K. Ritchie,et al.  Relationships Between Degree of Compression Wood Development and Specific Gravity and Tracheid Characteristics in Loblolly Pine (Pinus taeda L.) , 1968 .

[86]  L. Brancheriau,et al.  Ultrasonic wave parameter changes during propagation through poplar and spruce reaction wood , 2011 .

[87]  Gerhard Schickhofer,et al.  Development of high-performance strand boards: engineering design and experimental investigations , 2010, Wood Science and Technology.

[88]  Masato Yoshida,et al.  Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid , 2009, Journal of Wood Science.

[89]  P. Vinden,et al.  Tension wood occurrence in Eucalyptus globulus Labill. I. The spatial distribution of tension wood in one 11-year-old tree , 2002 .

[90]  E. Roffael,et al.  Zum Nachweis von Zugholz in Holzwerkstoffen aus Pappel , 1996, Holz als Roh- und Werkstoff.

[91]  S. Rahimi,et al.  Drying Stress and Strain in Tension Wood: A Conventional Kiln Schedule to Efficiently Dry Mixed Tension/Normal Wood Boards in Poplar , 2009 .

[92]  N. Graupner Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites , 2008, Journal of Materials Science.

[93]  P. Bekhta,et al.  Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood , 2003 .

[94]  Jacques Beauchêne,et al.  Mapping Radial,Tangential and Longitudinal Shrinkages and Relation to Tension Wood in Discs of the Tropical Tree Symphonia globulifera , 2003 .

[95]  I. Kuřitka,et al.  Environmentally friendly biocomposites based on waste of the dairy industry and poly(vinyl alcohol) , 2007 .

[96]  P. Cooper,et al.  Effect of oil type, temperature and time on moisture properties of hot oil-treated wood , 2005, Holz als Roh- und Werkstoff.

[97]  T. E. Timell Recent progress in the chemistry and topochemistry of compression wood , 1982, Wood Science and Technology.

[98]  Wolfgang Gindl,et al.  Comparing Mechanical Properties of Normal and Compression Wood in Norway Spruce: The Role of Lignin in Compression Parallel to the Grain , 2002 .

[99]  Masato Yoshida,et al.  Relationship between growth rate and growth stresses in Paraserianthes falcataria grown in Indonesia. , 2000 .

[100]  M. Grabner,et al.  A staining method for determining severity of tension wood , 2010 .

[101]  J. Isebrands,et al.  Effects of tension wood on kraft paper from a short-rotation hardwood (Populus “Tristis No. 1”) , 1977, Wood Science and Technology.

[102]  G. Jeronimidis,et al.  Comparison of mechanical properties of tension and opposite wood in Populus , 2004, Wood Science and Technology.