Modeling Advanced Wells in Reservoir Simulation

The use of advanced wells to improve the economics of production is now common practice. The term advanced is used to cover horizontal, multilateral, and smart wells (those containing sensors). A single advanced well can contact a larger region of the formation and may contact several isolated oil-bearing regions. Control devices enable progressive reduction of production from high water-cut or high gas/oil ratio (GOR) regions. However, advanced wells are considerably more expensive to drill and complete, and their use must be justified by a corresponding increase in economic recovvery. Reservoir simulation plays an important role in this decision. But to provide meaningful results, the simulation model must be able to predict well performance accurately over the lifetime of the reservoir. For smart wells, the model also must be able to predict effects of the control devices. Therefore, it is important that the well model be able to calculate, with a reasonable degree of accuracy, the pressure and fluid-flow rates at all locations in the well (including any lateral branches) and the pressure drop across control devices. For this degree of functionality, a suitable advanced from of well model must be used.