HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
暂无分享,去创建一个
[1] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] H. Rabitz,et al. Efficient input-output model representations , 1999 .
[3] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[4] M. Demiralp,et al. Hybrid high dimensional model representation (HHDMR) on the partitioned data , 2006 .
[5] M. Alper Tunga. An approximation method to model multivariate interpolation problems: Indexing HDMR , 2011, Math. Comput. Model..
[6] M. Eldred,et al. Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos. , 2008 .
[7] A. Saltelli,et al. An alternative way to compute Fourier amplitude sensitivity test (FAST) , 1998 .
[8] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[9] Xiang Ma,et al. An Efficient Computational Framework For Uncertainty Quantification In Multiscale Systems , 2011 .
[10] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[11] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[12] M. Eldred. Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .
[13] Dirk Pflüger,et al. Spatially Adaptive Sparse Grids for High-Dimensional Problems , 2010 .
[14] Stefano Tarantola,et al. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .
[15] M. Eldred,et al. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .
[16] J. C. Helton,et al. Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations, 1: Review and Comparison of Techniques , 1999 .
[17] N. Wiener. The Homogeneous Chaos , 1938 .
[18] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[19] Minseok Choi,et al. Error Estimates for the ANOVA Method with Polynomial Chaos Interpolation: Tensor Product Functions , 2012, SIAM J. Sci. Comput..
[20] H. Rabitz,et al. An efficient chemical kinetics solver using high dimensional model representation , 1999 .
[21] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[22] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[23] Herschel Rabitz,et al. Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .
[24] Weichung Wang,et al. Optimizing Latin hypercube designs by particle swarm , 2012, Statistics and Computing.
[25] Andrew J. Majda,et al. Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .
[26] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[27] Rémi Abgrall,et al. Sensitivity analysis using anchored ANOVA expansion and high‐order moments computation , 2015 .
[28] Adrian Sandu,et al. Collocation least-squares polynomial chaos method , 2010, SpringSim.
[29] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[30] Giles Hooker,et al. Discovering additive structure in black box functions , 2004, KDD.
[31] Agus Sudjianto,et al. Blind Kriging: A New Method for Developing Metamodels , 2008 .
[32] Antonello Monti,et al. Advantages and challenges of non-intrusive polynomial chaos theory , 2011 .
[33] J. Kleijnen,et al. Statistical analyses of scatterplots to identify important factors in large-scale simulations, 2: robustness of techniques , 1999 .
[34] J. Kwon,et al. ON THE USE OF KRIGING IN THE INTERPOLATION OF FLUID-STRUCTURE INTERACTION ANALYSIS , 2008 .
[35] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[36] Herschel Rabitz,et al. High‐dimensional model representations generated from low order terms—lp‐RS‐HDMR , 2003, J. Comput. Chem..
[37] Richard Bellman,et al. Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.
[38] H. Rabitz,et al. High Dimensional Model Representations , 2001 .
[39] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .