Structural investigation of the adsorption of snpc on Ag(111) using normal-incidence x-ray standing waves

[1]  E. Umbach,et al.  Chemical bonding of PTCDA on Ag surfaces and the formation of interface states , 2006 .

[2]  D. P. Woodruff,et al.  Self-assembly of an aromatic thiolate on Cu(1 0 0): The local adsorption site , 2005 .

[3]  I. Vartanyants,et al.  Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): an X-ray standing wave , 2005, cond-mat/0502671.

[4]  M. Rohlfing,et al.  Molecular distortions and chemical bonding of a large pi-conjugated molecule on a metal surface. , 2005, Physical review letters.

[5]  C. Kumpf,et al.  Chemisorption of NTCDA on Ag(1 1 1): a NIXSW study including non-dipolar and electron-stimulated effects , 2004 .

[6]  A. Schöll,et al.  High-Resolution Photoemission Study of Different NTCDA Monolayers on Ag(111): Bonding and Screening Influences on the Line Shapes† , 2004 .

[7]  F. Schreiber Organic Molecular Beam Deposition: Growth Studies beyond the First Monolayer , 2004 .

[8]  E. Umbach,et al.  Temperature-dependent morphology and structure of ordered 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (PTCDA) thin films on Ag(1 1 1) , 2003 .

[9]  M. Hietschold,et al.  Determining adsorption geometry of individual tin–phthalocyanine molecules on Ag(111)––a STM study at submonolayer coverage , 2002 .

[10]  E. Umbach,et al.  Adsorption site determination of a large π-conjugated molecule by normal incidence x-ray standing waves: End-capped quaterthiophene on Ag(111) , 2002 .

[11]  A. Kahn,et al.  Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA , 2002, cond-mat/0205351.

[12]  D. P. Woodruff,et al.  X-ray standing waves at surfaces , 2002 .

[13]  D. P. Woodruff,et al.  Non-dipole effects in photoelectron-monitored X-ray standing wave experiments: characterisation and calibration , 2001 .

[14]  Y. Ouchi,et al.  Electronic structure of organic/metal interfaces , 2001 .

[15]  I. Vartanyants,et al.  Photoelectric scattering from an X-ray interference field , 1999 .

[16]  I. Vartanyants,et al.  Quadrupole Contribution to the Angular Resolved Photoemission from an X‐Ray Interference Field , 1999 .

[17]  E. Umbach,et al.  Substrate-dependent lateral order in naphthalene-tetracarboxylic-dianhydride monolayers , 1999 .

[18]  E. Umbach,et al.  NEXAFS investigations of NTCDA monolayers on different metal substrates , 1999 .

[19]  D. P. Woodruff Normal incidence X-ray standing wave determination of adsorbate structures , 1998 .

[20]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[21]  E. Umbach,et al.  Substrate-interaction, long-range order, and epitaxy of large organic adsorbates , 1996 .

[22]  Kahn,et al.  Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. , 1996, Physical review. B, Condensed matter.

[23]  E. Umbach,et al.  Different bonding configurations of the aromatic anhydride NDCA on Ni(111) and ONi(111): a photoemission and TDS study , 1996 .

[24]  J. Zegenhagen,et al.  Surface structure determination with X-ray standing waves , 1993 .

[25]  Pratt,et al.  Higher retardation and multipole corrections to the dipole angular distribution of 1s photoelectrons at low energies. , 1989, Physical review. A, General physics.

[26]  B. Batterman,et al.  Dynamical Diffraction of X Rays by Perfect Crystals , 1964 .