On the phase transitions of graph coloring and independent sets

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[3]  Valmir Carneiro Barbosa,et al.  Two Novel Evolutionary Formulations of the Graph Coloring Problem , 2003, J. Comb. Optim..

[4]  Valmir Carneiro Barbosa,et al.  A Novel Evolutionary Formulation of the Maximum Independent Set Problem , 2003, J. Comb. Optim..

[5]  Lorenza Saitta,et al.  Phase Transitions in Relational Learning , 2000, Machine Learning.

[6]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[7]  V. Barbosa,et al.  The Interleaved Multichromatic Number of a Graph , 2002, math/0309380.

[8]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[9]  Bodo Lass,et al.  Orientations Acycliques et le Polyno^me Chromatique , 2001, Eur. J. Comb..

[10]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[11]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[12]  M. Weigt,et al.  Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Alexander K. Hartmann,et al.  Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs , 2000, Theor. Comput. Sci..

[14]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[15]  Valmir C. Barbosa An Atlas of Edge-Reversal Dynamics , 2000 .

[16]  Jayme Luiz Szwarcfiter,et al.  Generating all the Acyclic Orientations of an Undirected Graph , 1999, Inf. Process. Lett..

[17]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[18]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[19]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[20]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[21]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[22]  David S. Johnson,et al.  Foreword xiIntroduction to the Second DIMACS Challenge: Cliques, coloring, and satisfiability , 1993, Cliques, Coloring, and Satisfiability.

[23]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[24]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[25]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[26]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[27]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[28]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[29]  Eli Gafni,et al.  Concurrency in heavily loaded neighborhood-constrained systems , 1989, ICDCS.

[30]  Kiem-Phong Vo Graph colorings and acyclic orientations , 1987 .

[31]  F. Y. Wu The Potts model , 1982 .

[32]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[33]  R. W. Deming Acyclic orientations of a graph and chromatic and independence numbers , 1979, J. Comb. Theory, Ser. B.

[34]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Richard P. Stanley,et al.  Acyclic orientations of graphs , 1973, Discret. Math..

[37]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[38]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[39]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[40]  B. Roy Nombre chromatique et plus longs chemins d'un graphe , 1967 .

[41]  O. Ore Theory of Graphs , 1962 .

[42]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[43]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .