Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting†

We demonstrate an improvement of the emission quantum yield and the luminance figures of merit of metal-free bridged silsesquioxanes—by a factor of 2, 0.43 ± 0.04, and by two orders of magnitude, (1.4 ± 0.1) × 104 cd m−2, respectively—by changing the regioisomer of the silylated precursor. The organic–inorganic hybrids are easily excited by commercial blue InGaN-based light emitting diodes (LEDs) displaying an intriguing potential to applications in green photonics as metal-free phosphors for solid state lighting.

[1]  Rute A. S. Ferreira,et al.  Modulating the Photoluminescence of Bridged Silsesquioxanes Incorporating Eu3+-Complexed n,n′-Diureido-2,2′-bipyridine Isomers: Application for Luminescent Solar Concentrators , 2011 .

[2]  A. Eychmüller,et al.  Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications , 2011 .

[3]  Svetlana V. Eliseeva,et al.  Rare earths: jewels for functional materials of the future , 2011 .

[4]  G. Zissis,et al.  Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? , 2011, Progress in Retinal and Eye Research.

[5]  Ru‐Shi Liu,et al.  Advances in Phosphors for Light-emitting Diodes. , 2011, The journal of physical chemistry letters.

[6]  Mark S. Rea,et al.  Biophotonics: Circadian photonics , 2011 .

[7]  M. Popall,et al.  Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. , 2011, Chemical Society reviews.

[8]  V. de Zea Bermudez,et al.  Progress on lanthanide-based organic-inorganic hybrid phosphors. , 2011, Chemical Society reviews.

[9]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[10]  R. Ferreira,et al.  Efficient spectrally dynamic blue‐to‐green emission of bipyridine‐based bridged silsesquioxanes for solid‐state lighting , 2010 .

[11]  Martin R. Bryce,et al.  Recent Advances in White Organic Light‐Emitting Materials and Devices (WOLEDs) , 2010, Advanced materials.

[12]  R. Stone Materials science. As China's rare earth R&D becomes ever more rarefied, others tremble. , 2009, Science.

[13]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.

[14]  M. Taillefer,et al.  Efficient and Versatile Sol‐Gel Immobilized Copper Catalyst for Ullmann Arylation of Phenols , 2008 .

[15]  Mike Heilemann,et al.  A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. , 2008, Angewandte Chemie.

[16]  C. Humphreys Solid-State Lighting , 2008 .

[17]  Peter Dedecker,et al.  Fluorescence of single molecules in polymer films: sensitivity of blinking to local environment. , 2007, The journal of physical chemistry. B.

[18]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[19]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[20]  Luís D. Carlos,et al.  White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids: Emitting Centers and Recombination Mechanisms , 2004 .

[21]  Luís D. Carlos,et al.  Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions , 2001 .

[22]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[23]  B. Viana,et al.  Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials , 2008 .