Averaging technique in flash analog-to-digital converters

The averaging technique is used in flash analog-to-digital converters to reduce nonlinearities resulting from random offset voltages of the pre-amplifiers, which stand before the comparators. The main contribution of this paper is to provide further insight into this technique, through exact closed-form expressions obtained for the output voltage, gain, integral nonlinearity and differential nonlinearity in averaged pre-amplifiers. These theoretical results are compared with HSPICE simulations, and a very good agreement is found. Finally an automatic design procedure is described, which is based on the expressions derived, and a design example is given.

[1]  M.M. Silva,et al.  Error analysis of parallel analogue to digital converters , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[2]  A. Abidi,et al.  A 6 b 1.3 GSample/s A/D converter in 0.35 /spl mu/m CMOS , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[3]  M. Vertregt,et al.  A 6b 1.6 Gsample/s flash ADC in 0.18 /spl mu/m CMOS using averaging termination , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[4]  M. Vertregt,et al.  A 6b 1.6GSample/s flash ADC in 0.18/spl mu/m CMOS using averaging termination , 2002 .

[5]  Louis A. Schmittroth,et al.  Numerical inversion of Laplace transforms , 1960, Commun. ACM.

[6]  K. Kattmann,et al.  A Technique For Reducing Differential Non-linearity Errors In Flash A/D Converters , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[7]  Pedro M. Figueiredo,et al.  A pipeline 15-b 10-Msample/s analog-to-digital converter for ADSL applications , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[8]  M. Vertregt,et al.  A 25-Ms/s 8-bit CMOS A/D converter for embedded application , 1994 .

[9]  K. Bult,et al.  An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2 , 1997, IEEE J. Solid State Circuits.

[10]  Asad A. Abidi,et al.  A 6 b 1.3 GSample/s A/D converter in 0.35 μm CMOS , 2001 .

[11]  J. L. White,et al.  Active resistor networks as 2D sampled data filters , 1992 .

[12]  Akira Matsuzawa,et al.  A 10 b 300 MHz interpolated-parallel A/D converter , 1992, 1992 Symposium on VLSI Circuits Digest of Technical Papers.

[13]  Michiel Steyaert,et al.  Design techniques and implementation of an 8-bit 200-MS/s interpolating/averaging CMOS A/D converter , 2003 .

[14]  Harald Stehfest,et al.  Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970, CACM.

[15]  Bruce A. Wooley,et al.  Analysis and simulation of distortion in folding and interpolating A/D converters , 2002 .

[16]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[17]  Michel Steyaert,et al.  A 12-bit intrinsic accuracy high-speed CMOS DAC , 1998, IEEE J. Solid State Circuits.

[18]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[19]  A.A. Abidi,et al.  A 3.3-V 12-b 50-MS/s A/D converter in 0.6-/spl mu/m CMOS with over 80-dB SFDR , 2000, IEEE Journal of Solid-State Circuits.

[20]  P. Wambacq,et al.  High-level modeling of a high-speed flash A/D converter for mixed-signal simulations of digital telecommunication front-ends , 2000, 2000 Southwest Symposium on Mixed-Signal Design (Cat. No.00EX390).