A general approach to avoiding two by two submatrices
暂无分享,去创建一个
Gerhard J. Woeginger | Vladimir G. Deineko | Rüdiger Rudolf | V. Deineko | G. Woeginger | Rüdiger Rudolf
[1] Gerhard J. Woeginger,et al. Permuting Matrices to Avoid Forbidden Submatrices , 1995, Discret. Appl. Math..
[2] Kurt Mehlhorn,et al. Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness , 1984, EATCS Monographs on Theoretical Computer Science.
[3] Peter L. Hammer,et al. Discrete Applied Mathematics , 1993 .
[4] Christos H. Papadimitriou,et al. Elements of the Theory of Computation , 1997, SIGA.
[5] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[6] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[7] A. Hoffman,et al. Totally-Balanced and Greedy Matrices , 1985 .
[8] Alexander A. Ageev,et al. Polynomially Solvable Cases of the Simple Plant Location Problem , 1990, IPCO.
[9] Gerhard J. Woeginger,et al. on the Recognition of Permuted Bottleneck Monge Matrices , 1995, Discret. Appl. Math..
[10] Gerhard J. Woeginger,et al. Polynomial Graph-Colorings , 1989, STACS.
[11] Prof. Dr. Kurt Mehlhorn,et al. Data Structures and Algorithms 2 , 1984, EATCS Monographs on Theoretical Computer Science.
[12] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[13] F. Supnick,et al. Extreme Hamiltonian Lines , 1957 .
[14] Anna Lubiw,et al. Doubly Lexical Orderings of Matrices , 1987, SIAM J. Comput..
[15] Gerhard J. Woeginger,et al. On the Recognition of Permuted Bottleneck Monge Matrices , 1993, ESA.
[16] James K. Park. A Special Case of the n-Vertex Traveling-Salesman Problem that can be Solved in O(n) Time , 1991, Inf. Process. Lett..
[17] R. Burkard,et al. Universal Conditions for Algebraic Traveling Salesman Problems to be Efficiently Solvable , 1991 .
[18] E. Burkard Rainer. Special cases of travelling salesman problems and heuristics , 1990 .