A model predictive controller for quadrocopter state interception

This paper presents a method for generating quadrocopter trajectories in real time, from some initial state to a final state defined by position, velocity and acceleration in a specified amount of time. The end state captures the attitude to within a rotation about the thrust axis. Trajectory generation is done by formulating the trajectory of the quadrocopter in its jerk, in discrete time, and then solving a convex optimisation problem on each decoupled axis. Convex bounds are derived to include feasibility constraints with respect to the quadrocopter's total allowable thrust and angular rates.

[1]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[2]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[3]  Roland Siegwart,et al.  Design and control of an indoor micro quadrotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[4]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[5]  Peter H. Zipfel,et al.  Modeling and Simulation of Aerospace Vehicle Dynamics, Second Edition , 2007 .

[6]  Claire J. Tomlin,et al.  Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment , 2007 .

[7]  Guilherme V. Raffo,et al.  MPC with Nonlinear ℋ∞ Control for Path Tracking of a Quad-Rotor Helicopter , 2008 .

[8]  George Nikolakopoulos,et al.  Coordination of Helicopter UAVs for Aerial Forest-Fire Surveillance , 2009 .

[9]  Philippe Martin,et al.  The true role of accelerometer feedback in quadrotor control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[10]  Vijay Kumar,et al.  Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors , 2010, ISER.

[11]  Raffaello D'Andrea,et al.  A simple learning strategy for high-speed quadrocopter multi-flips , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Raffaello D'Andrea,et al.  Quadrocopter ball juggling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Raffaello D'Andrea,et al.  Quadrocopter Trajectory Generation and Control , 2011 .

[15]  Nathan E Serrano,et al.  Autonomous quadrotor unmanned aerial vehicle for culvert inspection , 2011 .

[16]  Anthony Tzes,et al.  Model predictive quadrotor indoor position control , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[17]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[18]  Angela P. Schoellig,et al.  Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Raffaello D'Andrea,et al.  Real-time trajectory generation for interception maneuvers with quadrocopters , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Raffaello D'Andrea,et al.  Performance benchmarking of quadrotor systems using time-optimal control , 2012, Auton. Robots.

[21]  Claire J. Tomlin,et al.  Learning-based model predictive control on a quadrotor: Onboard implementation and experimental results , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  Roland Siegwart,et al.  Versatile distributed pose estimation and sensor self-calibration for an autonomous MAV , 2012, 2012 IEEE International Conference on Robotics and Automation.

[23]  Manfred Morari,et al.  Efficient interior point methods for multistage problems arising in receding horizon control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).