Traveling Wave Magnetic Particle Imaging

Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called “Traveling Wave MPI” is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction.

[1]  Justin J. Konkle,et al.  Projection Reconstruction Magnetic Particle Imaging , 2013, IEEE Transactions on Medical Imaging.

[2]  T. M. Buzug,et al.  Efficient Magnetic Gradient Field Generation With Arbitrary Axial Displacement for Magnetic Particle Imaging , 2012, IEEE Magnetics Letters.

[3]  W Irnich,et al.  Magnetostimulation in MRI , 1995, Magnetic resonance in medicine.

[4]  B Gleich,et al.  Trajectory analysis for magnetic particle imaging , 2008, Physics in medicine and biology.

[5]  Hermann Schomberg,et al.  Magnetic particle imaging: Model and reconstruction , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[6]  B Gleich,et al.  Experimental results on fast 2D-encoded magnetic particle imaging , 2008, Physics in medicine and biology.

[7]  Bernhard Gleich,et al.  Analysis of a 3-D System Function Measured for Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[8]  Bo Zheng,et al.  Towards multidimensional x-space magnetic particle imaging for improved resolution , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[9]  P A Bottomley,et al.  RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. , 1978, Physics in medicine and biology.

[10]  Patrick W. Goodwill,et al.  The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation , 2010, IEEE Transactions on Medical Imaging.

[11]  Thorsten M. Buzug,et al.  Model-Based Reconstruction for Magnetic Particle Imaging , 2010, IEEE Transactions on Medical Imaging.

[12]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[13]  Bernhard Gleich,et al.  Continuous Focus Field Variation for Extending the Imaging Range in 3D MPI , 2012 .

[14]  Patrick W. Goodwill,et al.  Magnetostimulation Limits in Magnetic Particle Imaging , 2013, IEEE Transactions on Medical Imaging.

[15]  Jürgen Rahmer,et al.  Fast MPI Demonstrator with Enlarged Field of View , 2010 .

[16]  Patrick W. Goodwill,et al.  Narrowband Magnetic Particle Imaging , 2009, IEEE Transactions on Medical Imaging.

[17]  O. Woywode,et al.  Fast continuous motion of the field of view in magnetic particle imaging , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[18]  D. Savitz,et al.  INTERNATIONAL COMMISSION ON NON-IONIZING RADIATION PROTECTION , 2011 .

[19]  Thorsten M. Buzug,et al.  Field-free line formation in a magnetic field , 2010 .

[20]  Thorsten M. Buzug,et al.  Single-sided device for magnetic particle imaging , 2009 .

[21]  Patrick W. Goodwill,et al.  Multidimensional X-Space Magnetic Particle Imaging , 2011, IEEE Transactions on Medical Imaging.

[22]  Bo Zheng,et al.  Projection X-Space Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[23]  Bernhard Gleich,et al.  Magnetic particle imaging using a field free line , 2008 .

[24]  B Gleich,et al.  Three-dimensional real-time in vivo magnetic particle imaging , 2009, Physics in medicine and biology.

[25]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[26]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.