Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators

Inthe last decadewe havewitnessed excitingtechnologicaladvancesin the fabricationand control of microelectromechanical and nanoelectromechanical systems (MEMS& NEMS) [1–5]. Such systems are being developed for a host of nanotechnologicalapplications,suchashighly-sensitivemass[6–8],spin[9],andchargedetectors[10,11],aswellasforbasicresearchinthemesoscopicphysicsofphonons[12],andthegeneralstudy of the behavior of mechanical degrees of freedom at the interface between thequantum and the classical worlds [13,14]. Surprisingly, MEMS & NEMS have alsoopenedup a whole new experimentalwindowinto the study of the nonlineardynamicsof discrete systems in the form of nonlinear micromechanical and nanomechanicaloscillators and resonators.Thepurposeofthisreviewisto providean introductionto thenonlineardynamicsofmicromechanical and nanomechanical resonators that starts from the basics, but alsotouches upon some of the advanced topics that are relevant for current experimentswith MEMS & NEMS devices. We begin in this section with a general motivation,explaining why nonlinearities are so often observed in NEMS & MEMS devices. In§ 1.2 we describe the dynamics of one of the simplest nonlinear devices—the Duffingresonator—while giving a tutorial in secular perturbation theory as we calculate itsresponse to an external drive. We continue to use the same analytical tools in § 1.3 todiscuss the dynamics of a parametrically-excited Duffing resonator, building up to thedescription of the dynamicsof an array of coupled parametrically-excitedDuffing res-onatorsin § 1.4. We conclude in § 1.5 by giving an amplitude equation description forthe array of coupled Duffing resonators, allowing us to extend our analytic capabilitiesin predicting and explaining the nature of its dynamics.

[1]  Germany,et al.  Mechanical mixing in nonlinear nanomechanical resonators , 2000 .

[2]  M. Roukes,et al.  Metastability and the Casimir effect in micromechanical systems , 2000, cond-mat/0008096.

[3]  L. Sekaric,et al.  Measurement of mechanical resonance and losses in nanometer scale silicon wires , 1999 .

[4]  Gilberto Corso,et al.  Evidence of a nanomechanical resonator being driven into chaotic response via the Ruelle–Takens route , 2002 .

[5]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[6]  Miles P. Blencowe,et al.  Quantum electromechanical systems , 2004 .

[7]  Eyal Buks,et al.  Nonlinear dynamics in nanomechanical oscillators , 2005, 2005 International Conference on MEMS,NANO and Smart Systems.

[8]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[9]  Hermann Riecke,et al.  Stable wave-number kinks in parametrically excited standing waves , 1990 .

[10]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[11]  W. Harrison,et al.  Proceedings of the 17th International Conference on the Physics of Semiconductors , 1985 .

[12]  Gregory J. Wagner,et al.  Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope , 2002 .

[13]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[14]  L Q English,et al.  Study of intrinsic localized vibrational modes in micromechanical oscillator arrays. , 2003, Chaos.

[15]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[16]  M. Roukes,et al.  Plenty of room, indeed. , 2001, Scientific American.

[17]  Alex Retzker,et al.  Classical to quantum transition of a driven nonlinear nanomechanical resonator , 2007, Physical review letters.

[18]  Bernard Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Kimberly L. Turner,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Mechanical Domain Coupled Mode Parametric Resonance and Amplification in a Torsional Mode Micro Electro Mechanical Oscillator , 2022 .

[20]  R. Almog,et al.  High intermodulation gain in a micromechanical Duffing resonator , 2005 .

[21]  Jeff Moehlis,et al.  Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators , 2006 .

[22]  T. D. Yuzvinsky,et al.  Ultrahigh frequency nanotube resonators. , 2006, Physical review letters.

[23]  B. Hubbard,et al.  Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. , 2003, Physical review letters.

[24]  Steven W. Shaw,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering the Nonlinear Response of Resonant Microbeam Systems with Purely-parametric Electrostatic Actuation , 2022 .

[25]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[26]  S. Milner,et al.  Square patterns and secondary instabilities in driven capillary waves , 1991, Journal of Fluid Mechanics.

[27]  Bernard Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006 .

[28]  A. Cleland Foundations of nanomechanics , 2002 .

[29]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[30]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[31]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[32]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[33]  J. Moehlis,et al.  Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators , 2007, Journal of Microelectromechanical Systems.

[34]  D. Greywall,et al.  Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[36]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[37]  R.B. Reichenbach,et al.  Third-order intermodulation in a micromechanical thermal mixer , 2005, Journal of Microelectromechanical Systems.

[38]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[39]  Michael L. Roukes,et al.  Electrically tunable collective response in a coupled micromechanical array , 2002 .

[40]  R. Deissler,et al.  Effect of Nonlinear Gradient Terms on Breathing Localized Solutions in the Quintic Complex Ginzburg-Landau Equation , 1998 .

[41]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[42]  J. Rogers,et al.  Synchronization by nonlinear frequency pulling. , 2004, Physical review letters.

[43]  Ron Lifshitz,et al.  Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2003 .

[44]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[45]  Lidija Sekaric,et al.  Parametric amplification in a torsional microresonator , 2000 .

[46]  Kimberly L. Turner,et al.  Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator , 2003 .

[47]  Yaron Bromberg,et al.  Response of discrete nonlinear systems with many degrees of freedom. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Wu,et al.  Subcritical bifurcations and nonlinear balloons in faraday waves , 2000, Physical review letters.

[49]  Wenhua Zhang,et al.  Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor , 2002 .

[50]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[51]  Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. , 2007, cond-mat/0702255.

[52]  Michael L. Roukes,et al.  Dynamic range of nanotube- and nanowire-based electromechanical systems , 2005 .

[53]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[54]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[55]  Peilong Chen Nonlinear wave dynamics in Faraday instabilities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  R Almog,et al.  Noise squeezing in a nanomechanical Duffing resonator. , 2007, Physical review letters.

[57]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[58]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[59]  A. J. Sievers,et al.  Optical manipulation of intrinsic localized vibrational energy in cantilever arrays , 2004, nlin/0403031.

[60]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[61]  Michael L. Roukes,et al.  Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators , 2006 .

[62]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.