Electronic structure of CO—An exercise in modern chemical bonding theory

This paper discusses recent progress that has been made in the understanding of the electronic structure and bonding situation of carbon monoxide which was analyzed using modern quantum chemical methods. The new results are compared with standard models of chemical bonding. The electronic charge distribution and the dipole moment, the nature of the HOMO and the bond dissociation energy are discussed in detail. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006

[1]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[2]  G. Frenking,et al.  The nature of the chemical bond in the light of an energy decomposition analysis , 2005 .

[3]  G. Frenking,et al.  Structure and Bonding of the Transition-Metal Carbonyl Complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN-, NC-, HCCH, CCH2, CH2, CF2, H2)1 , 1996 .

[4]  N. Winterton,et al.  Modern Coordination Chemistry: The Legacy of Joseph Chatt , 2007 .

[5]  M. Chiarelli,et al.  General Chemistry , 2019, Basic Chemical Concepts and Tables.

[6]  H. Willner,et al.  The synthesis, vibrational spectra, and molecular structure of [Ir(CO)(6)][SbF(6)](3).4HF - the first structurally characterized salt with a tripositive, homoleptic metal carbonyl cation and the first example of a tetrahedral hydrogen-bonded (HF)(4) cluster. , 2002, Journal of the American Chemical Society.

[7]  G. Frenking,et al.  Nonclassical Metal Carbonyls , 2007 .

[8]  Ian Fleming,et al.  Frontier Orbitals and Organic Chemical Reactions , 1977 .

[9]  S. Huzinaga,et al.  Electric dipole polarity of diatomic molecules , 1993, J. Comput. Chem..

[10]  Kenichi Fukui,et al.  Theory of Orientation and Stereoselection , 1975 .

[11]  G. Frenking,et al.  The Dewar-chatt-Duncanson bonding model of transition metal-olefin complexes examined by modern quantum chemical methods , 2002 .

[12]  G. Frenking,et al.  Trends in Molecular Geometries and Bond Strengths of the Homoleptic d10 Metal Carbonyl Cations [M(CO)n]x+ (Mx+=Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+; n=1–6): A Theoretical Study , 1999 .

[13]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[14]  J. Muenter,et al.  Electric dipole moment of carbon monoxide , 1975 .

[15]  H. Willner,et al.  σ-Bonded Metal Carbonyl Cations and Their Derivatives: Syntheses and Structural, Spectroscopic, and Bonding Principles† , 2003 .

[16]  F. Escudero,et al.  Atoms in molecules , 1982 .

[17]  G. Frenking,et al.  The Nature of the Transition Metal–Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond Energy Decomposition Analysis of TM(CO)6q (TMq = Hf2–, Ta1–, W0, Re1+, Os2+, Ir3+) , 2000 .

[18]  R. Berry,et al.  The use of scaled moments of inertia in experimental structure determinations: Extension to simple molecules containing hydrogen , 1988 .

[19]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[20]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[21]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[22]  G. Frenking,et al.  Theoretical Analysis of the Bonding between CO and Positively Charged Atoms , 1997 .

[23]  Gernot Frenking,et al.  Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond ☆ , 2001 .

[24]  Roald Hoffmann,et al.  Might BF and BNR2 Be Alternatives to CO? A Theoretical Quest for New Ligands in Organometallic Chemistry , 1998 .

[25]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[26]  K. Krogh-Jespersen,et al.  Why Do Cationic Carbon Monoxide Complexes Have High C−O Stretching Force Constants and Short C−O Bonds? Electrostatic Effects, Not σ-Bonding , 1996 .

[27]  Roald Hoffmann,et al.  IS CO A SPECIAL LIGAND IN ORGANOMETALLIC CHEMISTRY? THEORETICAL INVESTIGATION OF AB, FE(CO)4AB, AND FE(AB)5 (AB = N2, CO, BF, SIO) , 1998 .

[28]  Kenichi Fukui,et al.  Recognition of stereochemical paths by orbital interaction , 1971 .

[29]  D. A. Sullivan,et al.  Gas-Phase Ion and Neutral Thermochemistry , 1988 .

[30]  M. Lappert Modern Coordination Chemistry: The Legacy of Joseph Chatt , 2003 .

[31]  E. Baerends,et al.  Alternatives to the CO Ligand: Coordination of the Isolobal Analogues BF, BNH2, BN(CH3)2, and BO− in Mono‐ and Binuclear First‐Row Transition Metal Complexes , 1998 .

[32]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[33]  Mark A. Spackman,et al.  Chemical properties from the promolecule , 1986 .

[34]  R. Woods Microwave spectroscopy of molecular ions in the laboratory and in space , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[36]  G. Frenking,et al.  The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. , 2005, Chemistry.