Partial kernel PCA-based GLRT for fault diagnosis of nonlinear processes

[1]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[2]  Hazem Nounou,et al.  Kernel PLS-based GLRT method for fault detection of chemical processes , 2016 .

[3]  Hazem Nounou,et al.  Enhanced data validation strategy of air quality monitoring network , 2018, Environmental research.

[4]  Jin Hyun Park,et al.  Fault detection and identification of nonlinear processes based on kernel PCA , 2005 .

[5]  Hanwen Zhang,et al.  Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes , 2018, Comput. Chem. Eng..

[6]  Lirong Xia,et al.  Process monitoring based on improved recursive PCA methods by adaptive extracting principal components , 2013 .

[7]  Weihua Li,et al.  Isolation enhanced principal component analysis , 1999 .

[8]  Jun Ye,et al.  Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic numbers , 2015, J. Intell. Fuzzy Syst..

[9]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[10]  Stefano Di Gennaro,et al.  On the fault diagnosis problem for non-linear systems: A fuzzy sliding-mode observer approach , 2009, J. Intell. Fuzzy Syst..

[11]  Furong Gao,et al.  Review of Recent Research on Data-Based Process Monitoring , 2013 .

[12]  Ke Wang,et al.  An experimental study: An interpretative division method on principal component analysis , 2017, J. Intell. Fuzzy Syst..

[13]  Tordis E. Morud,et al.  Multivariate statistical process control; example from the chemical process industry , 1996 .

[14]  Ying-wei Zhang,et al.  Process data modeling using modified kernel partial least squares , 2010 .

[15]  Carlos F. Alcala,et al.  Reconstruction-based contribution for process monitoring with kernel principal component analysis , 2010, Proceedings of the 2010 American Control Conference.

[16]  Allen Tannenbaum,et al.  Statistical shape analysis using kernel PCA , 2006, Electronic Imaging.

[17]  Nader Meskin,et al.  Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA , 2018 .

[18]  In-Beum Lee,et al.  Fault detection and diagnosis based on modified independent component analysis , 2006 .

[19]  Zhiyi Li,et al.  Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications , 2019, Comput. Chem. Eng..

[20]  G. Uma,et al.  ANFIS based sensor fault detection for continuous stirred tank reactor , 2011, Appl. Soft Comput..

[21]  Hazem Nounou,et al.  Kernel Generalized Likelihood Ratio Test for Fault Detection of Biological Systems , 2018, IEEE Transactions on NanoBioscience.

[22]  Janos Gertler,et al.  Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems , 2005 .

[23]  Janos Gertler,et al.  Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions , 2000 .