The Ages and Masses of a Million Galactic-disk Main-sequence Turnoff and Subgiant Stars from the LAMOST Galactic Spectroscopic Surveys

We present estimates of stellar age and mass for 0.93 million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys. The ages and masses are determined by matching with stellar isochrones using a Bayesian algorithm, utilizing effective temperature , absolute magnitude , metallicity [Fe/H], and α-element to iron abundance ratio [α/Fe] deduced from the LAMOST spectra. Extensive examinations suggest the age and mass estimates are robust. Overall, the sample stars have a median error of 34% for the age estimates, and half of the stars older than 2 Gyr have age uncertainties of only 20%–30%. The median error for the mass estimates of the whole sample of stars is ~8%. The huge data set demonstrates good correlations among stellar age, [Fe/H] ([α/H]), and [α/Fe]. Particularly, double-sequence features are revealed in both the age–[α/Fe] and age–[Fe/H]([α/H]) spaces. In the [Fe/H]–[α/Fe] space, stars of 8–10 Gyr exhibit both the thin and thick disk sequences, while younger (older) stars show only the thin (thick) disk sequence, indicating that the thin disk became prominent 8–10 Gyr ago, while the thick disk formed earlier and was almost quenched 8 Gyr ago. Stellar ages exhibit positive vertical and negative radial gradients across the disk, and the outer disk of R 9 kpc exhibits a strong flare in stellar age distribution.

[1]  William J. Chaplin,et al.  AN IN-DEPTH STUDY OF GRID-BASED ASTEROSEISMIC ANALYSIS , 2010, 1009.3018.

[2]  Ž. Ivezić,et al.  THE GENESIS OF THE MILKY WAY'S THICK DISK VIA STELLAR MIGRATION , 2010, 1009.5997.

[3]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[4]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[5]  Wei Zhang,et al.  Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis , 2016, 1610.00083.

[6]  H. T. Zhang,et al.  LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA , 2015, 1508.06391.

[7]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk , 2014, 1401.4437.

[8]  R. Schiavon,et al.  The Integrated Spectrum of M67 and the Spectroscopic Age of M32 , 2003, astro-ph/0312164.

[9]  Zhanwen Han,et al.  Mass transfer from a giant star to a main-sequence companion and its contribution to long-orbital-period blue stragglers , 2008, 0804.2294.

[10]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[11]  J. Molgó,et al.  Flare in the Galactic stellar outer disc detected in SDSS-SEGUE data , 2014, 1405.7649.

[12]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[13]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[14]  The old anticentre open cluster Berkeley 32: membership and fundamental parameters , 2006, astro-ph/0602017.

[15]  A. Dotter,et al.  DEEP 2MASS PHOTOMETRY OF M67 AND CALIBRATION OF THE MAIN-SEQUENCE J − KS COLOR DIFFERENCE AS AN AGE INDICATOR , 2009, 0904.2907.

[16]  M. Martig,et al.  ON THE FORMATION OF GALACTIC THICK DISKS , 2015, 1502.06606.

[17]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[18]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[19]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[20]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[21]  C. Deliyannis,et al.  WIYN Open Cluster Study. XI. WIYN 3.5 meter Deep Photometry of M35 (NGC 2168) , 2002, astro-ph/0206440.

[22]  France.,et al.  A standard stellar library for evolutionary synthesis - II. The M dwarf extension , 1997, astro-ph/9710350.

[23]  Chao Liu,et al.  THE BINARITY OF MILKY WAY F,G,K STARS AS A FUNCTION OF EFFECTIVE TEMPERATURE AND METALLICITY , 2014, 1405.7105.

[24]  T. Appourchaux,et al.  ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA KEPLER MISSION , 2013, 1310.4001.

[25]  T. Beers,et al.  BINARY CONTAMINATION IN THE SEGUE SAMPLE: EFFECTS ON SSPP DETERMINATIONS OF STELLAR ATMOSPHERIC PARAMETERS , 2010, 1002.0001.

[26]  Bingqiu Chen,et al.  LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): target selection and the first release of value-added catalogues , 2014, 1412.6628.

[27]  Yuehua Wu,et al.  STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS , 2014, 1412.1233.

[28]  A. Bragaglia,et al.  The old open clusters Berkeley 32 and King 11 , 2007, 0704.0550.

[29]  Harvey B. Richer,et al.  The CFHT Open Star Cluster Survey. IV. Two Rich, Young Open Star Clusters: NGC 2168 (M35) and NGC 2323 (M50) , 2003, astro-ph/0306241.

[30]  Zhanwen Han,et al.  Binary coalescence from case A evolution: mergers and blue stragglers , 2007, 0710.4601.

[31]  Bingqiu Chen,et al.  LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues , 2017, 1701.05409.

[32]  P. Demarque,et al.  The Gap in the Color-Magnitude Diagram of NGC 2420: A Test of Convective Overshoot and Cluster Age , 1994 .

[33]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[34]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[35]  K. Stassun,et al.  STELLAR ROTATION IN M35: MASS–PERIOD RELATIONS, SPIN-DOWN RATES, AND GYROCHRONOLOGY , 2008, 0805.1040.

[36]  P. Stetson,et al.  On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color‐Temperature Relations, Distances, and Ages , 2004 .

[37]  Xiaohui Fan,et al.  Deep wide-field spectrophotometry of the open cluster M67 , 1996, astro-ph/9604178.

[38]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[39]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[40]  C. Jog,et al.  Origin of radially increasing stellar scaleheight in a galactic disk , 2002, astro-ph/0207453.

[41]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[42]  H. Rix,et al.  SPECTROSCOPIC DETERMINATION OF MASSES (AND IMPLIED AGES) FOR RED GIANTS , 2015, 1511.08204.

[43]  Michael S. Bessell,et al.  UBVRI PHOTOMETRY II: THE COUSINS VRI SYSTEM, ITS TEMPERATURE AND ABSOLUTE FLUX CALIBRATION, AND RELEVANCE FOR TWO-DIMENSIONAL PHOTOMETRY. , 1979 .

[44]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[45]  Bingqiu Chen,et al.  The LAMOST stellar parameter pipeline at Peking University – lsp3 , 2014, 1412.6627.

[46]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[47]  Lennart Lindegren,et al.  The Tycho-Gaia astrometric solution. How to get 2.5 million parallaxes with less than one year of Gaia data , 2014, 1412.8770.

[48]  Yang Huang,et al.  Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data , 2015, 1508.06080.

[49]  P. Kroupa,et al.  The stellar and sub-stellar IMF of simple and composite populations , 2011, 1112.3340.

[50]  N. C. Santos,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003 .

[51]  Lennart Lindegren,et al.  Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting , 2005 .

[52]  Bingqiu Chen,et al.  Relative flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre , 2014, 1412.6625.

[53]  H. Rix,et al.  Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances , 2016, 1609.03195.

[54]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[55]  A. Cabrera-Lavers,et al.  Old stellar Galactic disc in near-plane regions according to 2MASS: Scales, cut-off, flare and warp , 2002, astro-ph/0208236.

[56]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[57]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[58]  K. Strassmeier,et al.  ROTATION PERIODS FOR COOL STARS IN THE 4 Gyr OLD OPEN CLUSTER M67, THE SOLAR–STELLAR CONNECTION, AND THE APPLICABILITY OF GYROCHRONOLOGY TO AT LEAST SOLAR AGE , 2016, 1603.09179.

[59]  R. Ibata,et al.  Received; accepted Submitted to the Astrophysical Journal Letters. , 1998 .

[60]  Ž. Ivezić,et al.  FORMATION AND EVOLUTION OF THE DISK SYSTEM OF THE MILKY WAY: [α/Fe] RATIOS AND KINEMATICS OF THE SEGUE G-DWARF SAMPLE , 2011, 1104.3114.

[61]  D. Huber,et al.  A large sample of calibration stars for Gaia: log g from Kepler and CoRoT fields , 2013, 1302.7158.

[62]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[63]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[64]  S. Courteau,et al.  BAYESIAN INVESTIGATION OF ISOCHRONE CONSISTENCY USING THE OLD OPEN CLUSTER NGC 188 , 2015, 1501.01303.

[65]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[66]  P. Demarque,et al.  Solar calibration and the ages of the old disk clusters M67, NGC 188, and NGC 6791 , 1992 .

[67]  W. Chaplin,et al.  Asteroseismic surface gravity for evolved stars , 2013, 1305.6586.

[68]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[69]  M. Bessell Standard Photometric Systems , 2005 .

[70]  H. Rix,et al.  A RADIAL AGE GRADIENT IN THE GEOMETRICALLY THICK DISK OF THE MILKY WAY , 2016, 1609.01168.

[71]  D. Galad'i-Enr'iquez,et al.  uvby - H β CCD photometry and membership segregation of the open cluster NGC 2682 (M 67) , 2007, 0704.2887.

[72]  Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog , 2006, astro-ph/0607235.

[73]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[74]  J. Binney,et al.  Origin and structure of the Galactic disc(s) , 2009, 0907.1899.

[75]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[76]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[77]  M. Pinsonneault,et al.  The ages of the disk clusters NGC 188, M67, and NGC 752, using improved opacities and cluster membership data , 1995 .

[78]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.