Convergence Rate of the Causal Jacobi Derivative Estimator

Numerical causal derivative estimators from noisy data are essential for real time applications especially for control applications or fluid simulation so as to address the new paradigms in solid modeling and video compression. By using an analytical point of view due to Lanczos [9] to this causal case, we revisit nth order derivative estimators originally introduced within an algebraic framework by Mboup, Fliess and Join in [14,15]. Thanks to a given noise level δ and a well-suitable integration length window, we show that the derivative estimator error can be $\mathcal{O}(\delta ^{\frac{q+1}{n+1+q}})$ where q is the order of truncation of the Jacobi polynomial series expansion used. This so obtained bound helps us to choose the values of our parameter estimators. We show the efficiency of our method on some examples.

[1]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[2]  Dayan Liu,et al.  An error analysis in the algebraic estimation of a noisy sinusoidal signal , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[3]  Alexander G. Ramm,et al.  On stable numerical differentiation , 2001, Math. Comput..

[4]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[5]  Zewen Wang,et al.  Identification of the pollution source from one-dimensional parabolic equation models , 2012, Appl. Math. Comput..

[6]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[7]  C. Lanczos Applied Analysis , 1961 .

[8]  M. Fliess,et al.  Compression différentielle de transitoires bruités , 2004 .

[9]  Sudarshan P. Purushothaman,et al.  Lanczos' generalized derivative for higher orders , 2005 .

[10]  Leland B. Jackson,et al.  Approximating Noncausal IIR Digital Filters Having Arbitrary Poles, Including New Hilbert Transformer Designs, Via Forward/Backward Block Recursion , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[12]  M. Mboup Parameter estimation for signals described by differential equations , 2009 .

[13]  Zewen Wang,et al.  Numerical differentiation for high orders by an integration method , 2010, J. Comput. Appl. Math..

[14]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[15]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[16]  Salim Ibrir,et al.  Linear time-derivative trackers , 2004, Autom..

[17]  S. Zhan,et al.  Identification of parameters in one-dimensional IHCP , 1998 .

[18]  G. Nakamura,et al.  Numerical differentiation for the second order derivatives of functions of two variables , 2008 .

[19]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[20]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[21]  D. Murio,et al.  Discrete mollification and automatic numerical differentiation , 1998 .

[22]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[23]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.