Nonparametric regression: An up–to–date bibliography
暂无分享,去创建一个
[1] L. Devroye,et al. Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .
[2] Y. Mack,et al. Local Properties of k-NN Regression Estimates , 1981 .
[3] R. Singh. Applications of Estimators of a Density and its Derivatives to Certain Statistical Problems , 1977 .
[4] P. Cazes. Régression par boule et par l'analyse des correspondances , 1976 .
[5] M. Rosenblatt,et al. Smoothing Splines: Regression, Derivatives and Deconvolution , 1983 .
[6] R. M. Clark. Non‐Parametric Estimation of a Smooth Regression Function , 1977 .
[7] M. J. Fryer. A Review of Some Non-parametric Methods of Density Estimation , 1977 .
[8] Leszek Rutkowski,et al. On system identification by nonparametric function fitting , 1982 .
[9] G. Collomb. Jfon parametric time series analysis and prediction: uniform almost sure convergence of the window and jt-nn autoregression estimates , 1985 .
[10] A. Földes,et al. STRONG UNIFORM CONSISTENCY FOR NONPARAMETRIC SURVIVAL CURVE ESTIMATORS FROM RANDOMLY CENSORED DATA , 1981 .
[11] I. Ahmad,et al. NONPARAMETRIC SEQUENTIAL ESTIMATION OF A MULTIPLE REGRESSION FUNCTION , 1976 .
[12] B. Silverman,et al. Weak and strong uniform consistency of kernel regression estimates , 1982 .
[13] P. Révész,et al. How to apply the method of stochastic approximation in the non-parametric estimation of a regression function 1 , 1977 .
[14] P. Speckman. Spline Smoothing and Optimal Rates of Convergence in Nonparametric Regression Models , 1985 .
[15] P. Révész,et al. Strong approximations in probability and statistics , 1981 .
[16] S. Yakowitz,et al. Contributions to the Theory of Nonparametric Regression, with Application to System Identification , 1979 .
[17] L. Devroye. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates , 1982 .
[18] H. Müller,et al. Kernel estimation of regression functions , 1979 .
[19] Peter E. Hart,et al. Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.
[20] S. Wold. Spline Functions in Data Analysis , 1974 .
[21] Edmund Taylor Whittaker. On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.
[22] D. F. Utreras,et al. Optimal Smoothing of Noisy Data Using Spline Functions , 1981 .
[23] Prakasa Rao. Nonparametric functional estimation , 1983 .
[24] Stanley C. Fralick,et al. Nonparametric Bayes-risk estimation , 1971, IEEE Trans. Inf. Theory.
[25] H. Liero. On the maximal deviation of the kernel regression function estimate , 1982 .
[26] Robert F. Ling,et al. Classification and Clustering. , 1979 .
[27] P. Tuan. Nonparametric estimation of the drift coefficient in the diffusion equation , 1981 .
[28] W. S. Meisel,et al. General Estimates of the Intrinsic Variability of Data in Nonlinear Regression Models , 1976 .
[29] F. Utreras. Cross-validation techniques for smoothing spline functions in one or two dimensions , 1979 .
[30] I. A. Ibragimov,et al. Bounds for the Risks of Non-Parametric Regression Estimates , 1982 .
[31] John Van Ryzin,et al. Classification and clustering : proceedings of an advanced seminar conducted by the Mathematics Research Center, the University of Wisconsin at Madison, May 3-5, 1976 , 1977 .
[32] D. Bosq. Sur la prédiction non paramétrique de variables aléatoires et de mesures aléatoires , 1983 .
[33] G. Banon. Nonparametric Identification for Diffusion Processes , 1978 .
[34] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[35] G. Wahba,et al. A completely automatic french curve: fitting spline functions by cross validation , 1975 .
[36] E. Nadaraya. A limit distribution of the square error deviation of nonparametric estimators of the regression function , 1983 .
[37] M. Priestley,et al. Non‐Parametric Function Fitting , 1972 .
[38] A. Albert. A Mathematical Theory of Pattern Recognition , 1963 .
[39] E. Nadaraya. On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .
[40] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[41] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[42] A. Krzyżak,et al. Distribution-Free Pointwise Consistency of Kernel Regression Estimate , 1984 .
[43] L. Devroye. The uniform convergence of the nadaraya‐watson regression function estimate , 1978 .
[44] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[45] V. Konakov. On a Global Measure of Deviation for an Estimate of the Regression Line , 1978 .
[46] G. Wahba,et al. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .
[47] T. Cacoullos,et al. Discriminant analysis and applications , 1974 .
[48] E. L. Lehmann,et al. Unbiased Estimation in Convex Families , 1969 .
[49] T. Teichmann,et al. Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.
[50] E. Nadaraya,et al. On the Integral Mean Square Error of Some Nonparametric Estimates for the Density Function , 1974 .
[51] S. Yakowitz,et al. Uniform Convergence of the Potential Function Algorithm , 1976 .
[52] G. Collomb,et al. From Data Analysis to Non Parametric Statistics: Recent Developments and a Computer Realization for Exploratory Techniques in Regression or Prediction , 1982 .
[53] G. Collomb. Propriétés de convergence presque complète du prédicteur à noyau , 1984 .
[54] Eugene F. Schuster,et al. Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .
[55] Jiří Akaeěl,et al. Fitting models in time series analysis , 1982 .
[56] C. J. Stone,et al. Admissible Selection of an Accurate and Parsimonious Normal Linear Regression Model , 1981 .
[57] József Fritz,et al. Distribution-free exponential error bound for nearest neighbor pattern classification , 1975, IEEE Trans. Inf. Theory.
[58] C. Spiegelman,et al. Consistent Window Estimation in Nonparametric Regression , 1980 .
[59] A CLASS OF NONPARAMETRIC RECURSIVE ESTIMATORS OF A MULTIPLE REGRESSION FUNCTION , 1983 .
[60] V. Konakov. Asymptotic properties of some functions of nonparametric estimates of a density function , 1973 .
[61] Godfried T. Toussaint,et al. Bibliography on estimation of misclassification , 1974, IEEE Trans. Inf. Theory.
[62] G. Roussas. Nonparametric Estimation of the Transition Distribution Function of a Markov Process , 1969 .
[63] Leszek Rutkowski,et al. ORTHOGONAL SERIES ESTIMATES OF A REGRESSION FUNCTION WITH APPLICATIONS IN SYSTEM IDENTIFICATION , 1982 .
[64] F. Utreras Diaz,et al. Sur le choix du paramètre d'ajustement dans le lissage par fonctions spline , 1980 .
[65] Non Parametric Prediction in Stationary Processes , 1983 .
[66] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[67] G. Wahba. Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .
[68] P. Newbold,et al. Some Recent Developments in Time Series Analysis. III, Correspondent Paper , 1981 .
[69] B. Silverman,et al. Density Ratios, Empirical Likelihood and Cot Death , 1978 .
[70] G. Wahba. Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .
[71] L. Devroye,et al. On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .
[72] Gérard Collomb,et al. From Non Parametric Regression to Non Parametric Prediction: Survey of the Mean Square Error and Original Results on the Predictogram , 1983 .
[73] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[74] G. R. Goel. Limited space heterogeneous queueing problem with an additional special feeding source , 1977 .
[75] H. Robbins. The Empirical Bayes Approach to Statistical Decision Problems , 1964 .
[76] C. Ansley,et al. The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .
[77] W. Wertz. Statistical density estimation: A survey , 1978 .
[78] Gordon J Johnston,et al. Probabilities of maximal deviations for nonparametric regression function estimates , 1982 .
[79] Simulation in the General First Order Autoregressive Process (Unidimensional Normal Case) , 1983 .
[80] Pratique de la régression : qualité et protection , 1975 .
[81] J. V. Ryzin,et al. On the Empirical Bayes Approach to Multiple Decision Problems , 1977 .
[82] E. Nadaraya. Remarks on Non-Parametric Estimates for Density Functions and Regression Curves , 1970 .
[83] A. Krzyżak,et al. Asymptotic properties of kernel estimates of a regression function , 1980 .
[84] L. Rutkowski. On-line identification of time-varying systems by nonparametric techniques , 1982 .
[85] Pi-Erh Lin,et al. Nonparametric estimation of a regression function , 1981 .
[86] D. S. Tracy,et al. Strongly consistent estimators of k-th order regression curves and rates of convergence , 1977 .
[87] Remarks upon Empirical Regression Belt , 1979 .
[88] Kazuo Noda,et al. Estimation of a regression function by the parzen kernel-type density estimators , 1976 .
[89] S. Yakowitz. Nonparametric Estimation of Markov Transition Functions , 1979 .
[90] A. Georgiev. Speed of convergence in nonparametric kernel estimation of a regression function and its derivatives , 1984 .
[91] G. Wahba. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .
[92] I. W. Wright. Splines in Statistics , 1983 .
[93] G. Collomb. Estimation Non-paramétrique de la Régression: Revue Bibliographique@@@Estimation Non-parametrique de la Regression: Revue Bibliographique , 1981 .
[94] G. Collomb. Estimation de la regression par la methode des k points les plus proches avec noyau : quelques propriétés de convergence ponctuelle , 1980 .
[95] A. Krzyżak,et al. Almost Everywhere Convergence of Recursive Kernel Regression Function Estimates , 1982 .
[96] L. Devroye. On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .
[97] G. S. Watson,et al. Smooth regression analysis , 1964 .
[98] Thomas M. Cover,et al. Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.
[99] J. Kiefer,et al. Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .
[100] E. Nadaraya. On Estimating Regression , 1964 .
[101] K. Pearson,et al. ON THE LAWS OF INHERITANCE IN MAN I. INHERITANCE OF PHYSICAL CHARACTERS , 1903 .
[102] G. Wahba. Spline Interpolation and Smoothing on the Sphere , 1981 .
[103] Luc Devroye,et al. The uniform convergence of nearest neighbor regression function estimators and their application in optimization , 1978, IEEE Trans. Inf. Theory.
[104] M. Goovaerts,et al. On the infinite divisibility of the ratio of two gamma-distributed variables , 1978 .
[105] Efficacités comparées de certaines méthodes de prédiction pour un ARMA perturbé , 1981 .
[106] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .