Sampling algorithms and coresets for ℓp regression

The ℓ<sub><i>p</i></sub> <i>regression problem</i> takes as input a matrix <i>A</i> ∈ ℝ<sup><i>n</i></sup>, a vector <i>b</i> ∈ ℝ<i><sup>n</sup></i>, and a number <i>p</i> ∈ [1, ∞), and it returns as output a number Z and a vector <i>x</i><sub>OPT</sub> ∈ ℝ<sup>d</sup> such that Z = min<sub><i>x</i>∈ℝ<i>d</i></sub> ||<i>Ax</i> - <i>b</i>||<i><sub>p</sub></i> = ||<i>Ax</i><sub>OPT</sub> - <i>b</i>||<i><sub>p</sub></i>. In this paper, we construct coresets and obtain an efficient two-stage sampling-based approximation algorithm for the very overconstrained (<i>n</i> ≫ <i>d</i>) version of this classical problem, for all <i>p</i> ∈ [1, ∞). The first stage of our algorithm non-uniformly samples <i>&rcirc;</i>1 = <i>O</i>(36<i><sup>p</sup></i><i>d</i><sup>max</sup>{<i>p</i>/2+1, <i>p</i>}+1) rows of <i>A</i> and the corresponding elements of <i>b</i>, and then it solves the <i>l<sub>p</sub></i> regression problem on the sample; we prove this is an 8-approximation. The second stage of our algorithm uses the output of the first stage to resample <i>&rcirc;</i>1/ε<sup>2</sup> constraints, and then it solves the <i>l<sub>p</sub></i> regression problem on the new sample; we prove this is a (1 + ε)-approximation. Our algorithm unifies, improves upon, and extends the existing algorithms for special cases of ℓ<sub><i>p</i></sub> regression, namely <i>p</i> = 1,2 [10, 13]. In course of proving our result, we develop two concepts--well-conditioned bases and subspace-preserving sampling--that are of independent interest.

[1]  L. M. M.-T. Theory of Probability , 1929, Nature.

[2]  H. Jeffreys,et al.  The Theory of Probability , 1896 .

[3]  Angus E. Taylor A geometric theorem and its application to biorthogonal systems , 1947 .

[4]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[5]  G. Schechtman More on embedding subspaces of $L_p$ in $l^n_r$ , 1987 .

[6]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[7]  M. Talagrand Embedding subspaces of ₁ into ^{}₁ , 1990 .

[8]  M. Talagrand Embedding Subspaces of L 1 into l N 1 , 1990 .

[9]  M. Talagrand Embedding subspaces of L1 into l1N , 1990 .

[10]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[11]  Gideon Schechtman Of Rehovot,et al.  Embedding Subspaces of L P Intò N P , 0 < P < 1 , 1999 .

[12]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[13]  Terri L. Moore,et al.  Regression Analysis by Example , 2001, Technometrics.

[14]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[15]  Kenneth L. Clarkson,et al.  Smaller core-sets for balls , 2003, SODA '03.

[16]  Andreas Maurer A bound on the deviation probability for sums of non-negative random variables. , 2003 .

[17]  Sariel Har-Peled,et al.  On coresets for k-means and k-median clustering , 2004, STOC '04.

[18]  Baruch Awerbuch,et al.  Adaptive routing with end-to-end feedback: distributed learning and geometric approaches , 2004, STOC '04.

[19]  Pankaj K. Agarwal,et al.  Approximating extent measures of points , 2004, JACM.

[20]  Jon M. Kleinberg,et al.  Using mixture models for collaborative filtering , 2004, STOC '04.

[21]  K. Clarkson Subgradient and sampling algorithms for l1 regression , 2005, SODA '05.

[22]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[23]  Amos Fiat,et al.  Coresets forWeighted Facilities and Their Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[24]  Dan Feldman Coresets for Weighted Facilities and Their Applications , 2006 .

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[27]  S. Muthukrishnan,et al.  Sampling algorithms for l2 regression and applications , 2006, SODA '06.

[28]  Kasturi R. Varadarajan,et al.  Geometric Approximation via Coresets , 2007 .

[29]  M. Day POLYGONS CIRCUMSCRIBED ABOUT CLOSED CONVEX CURVES , 2010 .