Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots.

Recently reported colloidal lead halide perovskite quantum dots (QDs) with tunable photoluminescence (PL) wavelengths covering the whole visible spectrum and exceptionally high PL quantum yields (QYs, 50-90%) constitute a new family of functional materials with potential applications in light-harvesting and -emitting devices. By transient absorption spectroscopy, we show that the high PL QYs (∼79%) can be attributed to negligible electron or hole trapping pathways in CsPbBr3 QDs: ∼94% of lowest excitonic states decayed with a single-exponential time constant of 4.5 ± 0.2 ns. Furthermore, excitons in CsPbBr3 QDs can be efficiently dissociated in the presence of electron or hole acceptors. The half-lives of electron transfer (ET) to benzoquinone and subsequent charge recombination are 65 ± 5 ps and 2.6 ± 0.4 ns, respectively. The half-lives for hole transfer (HT) to phenothiazine and the subsequent charge recombination are 49 ± 6 ps and 1.0 ± 0.2 ns, respectively. The lack of electron and hole traps and fast interfacial ET and HT rates are key properties that may enable the development of efficient lead halide perovskite QDs-based light-harvesting and -emitting devices.

[1]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[2]  He Huang,et al.  Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature , 2015, Advanced science.

[3]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[4]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[5]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[6]  Youwei Wang,et al.  Auger-assisted electron transfer from photoexcited semiconductor quantum dots. , 2014, Nano letters.

[7]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[8]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[9]  E. Weiss,et al.  Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. , 2010, The journal of physical chemistry. B.

[10]  T. Lian,et al.  Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. , 2012, Nano letters.

[11]  T. Lian,et al.  Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. , 2011, Journal of the American Chemical Society.

[12]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[13]  T. Lian,et al.  Exciton Dissociation in CdSe Quantum Dots by Hole Transfer to Phenothiazine , 2008 .

[14]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[15]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[16]  T. Lian,et al.  Exciton annihilation and dissociation dynamics in group II-V Cd3P2 quantum dots. , 2013, The journal of physical chemistry. A.

[17]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[18]  Pooja Tyagi,et al.  Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. , 2015, The journal of physical chemistry letters.

[19]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[20]  Yi Yu,et al.  Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. , 2015, Journal of the American Chemical Society.

[21]  E. Weiss,et al.  Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. , 2011, Journal of the American Chemical Society.

[22]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[23]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[24]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[25]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[26]  Olga Malinkiewicz,et al.  Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. , 2014, Journal of the American Chemical Society.

[27]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[28]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[29]  T. Lian,et al.  Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. , 2013, The journal of physical chemistry. A.

[30]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[31]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[32]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[33]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[34]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[35]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[36]  T. Lian,et al.  Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface. , 2007, Journal of the American Chemical Society.

[37]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[38]  Illan J. Kramer,et al.  The architecture of colloidal quantum dot solar cells: materials to devices. , 2014, Chemical reviews.

[39]  Hua Tang,et al.  Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods. , 2015, Journal of the American Chemical Society.

[40]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[41]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[42]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[43]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[44]  T. Lian,et al.  Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. , 2012, Journal of the American Chemical Society.

[45]  Pooja Tyagi,et al.  False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping. , 2011, The Journal of chemical physics.

[46]  T. Lian,et al.  Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. , 2011, ACS nano.

[47]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[48]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.