Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

We demonstrate an efficient experimental procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995)] and the fully-entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996)] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. Our method requires neither full quantum state tomography of 15 parameters nor continuous scanning of the measurement bases used by two parties in the usual CHSH inequality tests with four measurements in each optimization step. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully-entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measured these witnesses and estimated the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

[1]  S. Walborn,et al.  Experimental determination of entanglement with a single measurement , 2006, Nature.

[2]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[3]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[4]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[5]  J. Fiurášek,et al.  Quantum inference of states and processes , 2002, quant-ph/0210146.

[6]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[7]  K. Życzkowski,et al.  Method for universal detection of two-photon polarization entanglement , 2014, 1405.5560.

[8]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[9]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[10]  Adam Miranowicz,et al.  Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality , 2013, 1301.2969.

[11]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[12]  Karol Bartkiewicz,et al.  Quantifying entanglement of a two-qubit system via measurable and invariant moments of its partially transposed density matrix , 2014, 1411.7977.

[13]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[14]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[15]  Collective uncertainty entanglement test. , 2011, Physical review letters.

[16]  S. Ishizaka Binegativity and geometry of entangled states in two qubits , 2003, quant-ph/0308056.

[17]  Florian Mintert,et al.  Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  F. A. Bovino,et al.  Direct Measurement of Nonlinear Properties of Bipartite Quantum States , 2006, Open Syst. Inf. Dyn..

[20]  S. Fei,et al.  Upper bound of the fully entangled fraction , 2008, 0810.0869.

[21]  Ping Xu,et al.  Implementation of a measurement-device-independent entanglement witness. , 2014, Physical review letters.

[22]  S. Fei,et al.  A note on fully entangled fraction , 2010, 1006.3502.

[23]  P. Horodecki Measuring quantum entanglement without prior state reconstruction. , 2001, Physical Review Letters.

[24]  Sahin Kaya Ozdemir,et al.  Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit , 2007, 0709.1662.

[25]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[26]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[27]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Adam Miranowicz,et al.  Priority Choice Experimental Two-Qubit Tomography: Measuring One by One All Elements of Density Matrices , 2015, Scientific Reports.

[30]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[31]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[32]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[33]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[34]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[35]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[36]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[37]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[38]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[39]  Adam Miranowicz Violation of Bell inequality and entanglement of decaying Werner states , 2004 .

[40]  Karol Bartkiewicz,et al.  Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference , 2016, 1612.00782.

[41]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[42]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[43]  Soojoon Lee,et al.  Monogamy of entanglement and teleportation capability , 2009, 0905.0742.

[44]  R. Horodecki Two-spin-12 mixtures and Bell's inequalities , 1996 .

[45]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[46]  M. Lucamarini,et al.  Research data supporting "An entangled-LED driven quantum relay over 1 km" , 2016 .

[47]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[48]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[49]  Adam Miranowicz,et al.  Direct method for measuring of purity, superfidelity, and subfidelity of photonic two-qubit mixed states , 2013 .

[50]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[51]  M. Kus,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[52]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[53]  J. Soubusta,et al.  Measuring nonclassical correlations of two-photon states , 2013, 1302.1221.

[54]  M. Horodecki,et al.  Local environment can enhance fidelity of quantum teleportation , 1999, quant-ph/9912098.

[55]  M. Zhao Maximally entangled states and fully entangled fraction , 2015, 1610.08147.

[56]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[57]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[58]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[59]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[60]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  J. Siewert,et al.  Negativity as an estimator of entanglement dimension. , 2013, Physical review letters.

[62]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[63]  W. M. Liu,et al.  Mixed maximally entangled states , 2012, Quantum Inf. Comput..

[64]  Xiaolong Su,et al.  Quantum Entanglement Swapping between Two Multipartite Entangled States. , 2016, Physical review letters.

[65]  H. Carteret Noiseless quantum circuits for the Peres separability criterion. , 2003, Physical review letters.

[66]  Karol Bartkiewicz,et al.  Experimental measurement of collective nonlinear entanglement witness for two qubits , 2016 .

[67]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[68]  Elizabeth Gibney,et al.  Chinese satellite is one giant step for the quantum internet , 2016, Nature.

[69]  Franco Nori,et al.  Optimal two-qubit tomography based on local and global measurements: Maximal robustness against errors as described by condition numbers , 2014, 1409.4622.

[70]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[71]  J. Grondalski,et al.  The fully entangled fraction as an inclusive measure of entanglement applications , 2002 .

[72]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[73]  K. Życzkowski,et al.  Collectibility for mixed quantum states , 2012, 1211.0573.

[74]  Sergio Albeverio,et al.  Optimal teleportation based on bell measurements , 2002, quant-ph/0208015.

[75]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[76]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[77]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[78]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .