Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees

Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

[1]  G. Mohren,et al.  Forest inventories for carbon change assessments , 2012 .

[2]  P. Kareiva,et al.  Ecosystem services , 2005, Current Biology.

[3]  Derrel L. Martin,et al.  Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land , 2015 .

[4]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[5]  Edoardo Greppi FAO (Food and Agriculture Organization of the United Nations) , 1981 .

[6]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[7]  Kerrie Mengersen,et al.  Motivation, development and validation of a new spectral greenness index: a spectral dimension related to foliage projective cover , 2010 .

[8]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[9]  Felix Kienast,et al.  20th Century Carbon Budget of Forest Soils in the Alps , 1999, Ecosystems.

[10]  D. Nowak,et al.  Carbon storage and sequestration by urban trees in the USA. , 2002, Environmental pollution.

[11]  N. Coops,et al.  Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review , 2011 .

[12]  D. Pitt,et al.  A Comparison of Point Clouds Derived from Stereo Imagery and Airborne Laser Scanning for the Area-Based Estimation of Forest Inventory Attributes in Boreal Ontario , 2014 .

[13]  Peter Scarth,et al.  Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery , 2009 .

[14]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[15]  N. Zimmermann,et al.  Predictive mapping of alpine grasslands in Switzerland: Species versus community approach , 1999 .

[16]  Martina L. Hobi,et al.  Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory , 2015, Remote. Sens..

[17]  P. Thornton,et al.  Current Opinion in Environmental Sustainability , 2009 .

[18]  L. Hutyra,et al.  Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region , 2011 .

[19]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[20]  Scott X. Chang,et al.  Agroforestry and the Carbon Market in the Tropics , 2014 .

[21]  T. Idol,et al.  Ecosystem Services from Smallholder Forestry and Agroforestry in the Tropics , 2011 .

[22]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[23]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[24]  Piermaria Corona,et al.  VALUTAZIONE DELLE RISORSE FORESTALI A LIVELLO GLOBALE , 2013 .

[25]  G. Keoleian,et al.  Carbon stored in human settlements: the conterminous United States , 2010 .

[26]  Florian Hartig,et al.  Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass , 2014 .

[27]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[28]  Göran Ståhl,et al.  The contribution of trees outside forests to national tree biomass and carbon stocks—a comparative study across three continents , 2014, Environmental Monitoring and Assessment.

[29]  Hansheinrich Bachofen,et al.  Schweizerisches Landesforstinventar : Ergebnisse der Erstaufnahme 1982-1986 , 1988 .

[30]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[31]  United Kingdom,et al.  GLOBAL FOREST RESOURCES ASSESSMENT 2005 , 2005 .

[32]  E. Assmann Waldertragskunde : organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen , 1961 .

[33]  E. Wald,et al.  Schweizerisches Landesforstinventar : Ergebnisse der Zweitaufnahme 1993-1995 , 1999 .

[34]  Wouter Achten,et al.  Comparison of carbon estimation methods for European forests , 2016 .

[35]  Ronald E. McRoberts,et al.  Comprar National Forest Inventories · Pathways for Common Reporting | Tomppo, Erkki | 9789048132324 | Springer , 2010 .

[36]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[37]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[38]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[39]  Maurizio Mencuccini,et al.  On simplifying allometric analyses of forest biomass , 2004 .

[40]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Dagmar Haase,et al.  Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city , 2012 .

[42]  Euan G. Mason,et al.  Quantitative validation and comparison of a range of forest growth model types , 2006 .

[43]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[44]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[45]  Richard A. Birdsey,et al.  Increasing biomass carbon stocks in trees outside forests in China over the last three decades , 2014 .

[46]  W. Campbell,et al.  Integrating Agriculture, Conservation and Ecotourism: Examples from the Field , 2011 .

[47]  B. McConkey,et al.  Carbon stock and change from woody biomass on Canada’s cropland between 1990 and 2000 , 2015 .

[48]  Heike Lischke,et al.  Swiss National Forest Inventory: Methods and Models of the Second Assessment , 2001 .

[49]  R. Mäkipää,et al.  Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass – A comparative study , 2012 .

[50]  Andrew O Finley,et al.  Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system , 2014, Carbon Balance and Management.

[51]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[52]  C. Ginzler,et al.  Die Baumbedeckung in der Schweiz , 2011 .

[53]  E. Gregory McPherson,et al.  new approach to quantify and map carbon stored , sequestered nd emissions avoided by urban forests , 2013 .