Wavelet Filter Banks
暂无分享,去创建一个
[1] J. Benedetto,et al. The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .
[2] A. Ron,et al. On the integer translates of compactly supported function: dual bases and linear projectors , 1990 .
[3] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[4] C. Heil. WHAT IS... a Frame , 2013 .
[5] G. Strang,et al. Approximation by translates of refinable functions , 1996 .
[6] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[7] Ding-Xuan Zhou. Existence of multiple refinable distributions. , 1997 .
[8] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[9] B. Han. Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters , 2013 .
[10] C. Chui,et al. Wavelets on a Bounded Interval , 1992 .
[11] Marcin Bownik. The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .
[12] L. Baggett,et al. Construction of Parseval wavelets from redundant filter systems , 2004, math/0405301.
[13] Bin Han,et al. Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order , 2008, SIAM J. Math. Anal..
[14] Say Song Goh,et al. Symmetric and antisymmetric tight wavelet frames , 2006 .
[15] Jean-Louis Merrien. A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.
[16] G. Strang,et al. A Fourier Analysis of the Finite Element Variational Method , 2011 .
[17] Martin Vetterli,et al. Balanced multiwavelets theory and design , 1998, IEEE Trans. Signal Process..
[18] Qiyu Sun,et al. The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces , 2004, Adv. Comput. Math..
[19] Herbert A. Medina,et al. Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℝn , 1999 .
[20] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[21] A. Cohen,et al. Regularity of Multivariate Refinable Functions , 1999 .
[22] B. Han,et al. Smooth affine shear tight frames with MRA structure , 2013, 1308.6205.
[23] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[24] Deguang Han,et al. Frames, bases, and group representations , 2000 .
[25] Baobin Li,et al. Parametrization for balanced multifilter banks , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.
[26] B. Han. On Dual Wavelet Tight Frames , 1997 .
[27] B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.
[28] Qingtang Jiang,et al. Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..
[29] A. Petukhov. Explicit Construction of Framelets , 2001 .
[30] Rong-Qing Jia,et al. Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..
[31] Bin Han,et al. Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..
[32] A. Cohen,et al. An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases , 1993 .
[33] S. Dubuc,et al. Convergent Vector and Hermite Subdivision Schemes , 2005 .
[34] C. Burrus,et al. Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .
[35] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[36] Qingtang Jiang,et al. Distributional Solutions of Nonhomogeneous Discrete and Continuous Refinement Equations , 2000, SIAM J. Math. Anal..
[37] C. Micchelli,et al. On vector subdivision , 1998 .
[38] Bin Han,et al. Symmetric orthonormal scaling functions and wavelets with dilation factor 4 , 1998, Adv. Comput. Math..
[39] Zuowei Shen,et al. PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .
[40] B. Han,et al. Generalized interpolating refinable function vectors , 2009 .
[41] Jürgen Prestin,et al. Multivariate periodic wavelet analysis , 2010 .
[42] R. Chan,et al. Tight frame: an efficient way for high-resolution image reconstruction , 2004 .
[43] R. A. Zalik. Riesz Bases and Multiresolution Analyses , 1999 .
[44] I. Daubechies,et al. A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .
[45] Deguang Han,et al. Frames Associated with Measurable Spaces , 2003, Adv. Comput. Math..
[46] R. Jia,et al. Stability and linear independence associated with wavelet decompositions , 1993 .
[47] Y. Meyer,et al. Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .
[48] G. Beylkin,et al. Compactly Supported Wavelets Based on Almost Interpolating and Nearly Linear Phase Filters (Coiflets) , 1999 .
[49] B. Han. Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.
[50] Bin Han,et al. Multiwavelet Frames from Refinable Function Vectors , 2003, Adv. Comput. Math..
[51] Rong-Qing Jia,et al. Approximation with scaled shift-invariant spaces by means of quasi-projection operators , 2004, J. Approx. Theory.
[52] D. Hardin,et al. Biorthogonal Multiwavelets on [−1, 1] , 1999 .
[53] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[54] R. Jia,et al. Refinable Functions with Exponential Decay: An Approach via Cascade Algorithms , 2011 .
[55] Zhenpeng Zhao,et al. Tensor Product Complex Tight Framelets with Increasing Directionality , 2013, SIAM J. Imaging Sci..
[56] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[57] George C. Donovan,et al. Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .
[58] L. Hervé. Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .
[59] Wenchang Sun,et al. Irregular wavelet/Gabor frames , 2002 .
[60] Bin Han,et al. Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001, J. Approx. Theory.
[61] Jelena Kovacevic,et al. Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.
[62] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[63] G. Plonka. Approximation order provided by refinable function vectors , 1997 .
[64] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[65] V. Strela,et al. Construction of multiscaling functions with approximation and symmetry , 1998 .
[66] Marcin Bownik. A Characterization of Affine Dual Frames in L2(Rn) , 2000 .
[67] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[68] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[69] Charles K. Chui,et al. Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..
[70] Arthur D. Szlam,et al. Diffusion wavelet packets , 2006 .
[71] I. Daubechies,et al. Sets of Matrices All Infinite Products of Which Converge , 1992 .
[72] I. Daubechies,et al. Othonormal bases of compactly supported wavelets III: better frequency resolution , 1993 .
[73] Qingtang Jiang,et al. Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets , 2002, Numerische Mathematik.
[74] Song Li,et al. Biorthogonal multiple wavelets generated by vector refinement equation , 2007 .
[75] Ding-Xuan Zhou,et al. Local linear independence of refinable vectors of functions , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[76] H. Feichtinger,et al. Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .
[77] Yang Wang. Two-scale dilation equations and the cascade algorithm , 1995 .
[78] Dirong Chen,et al. Stability Implies Convergence of Cascade Algorithms in Sobolev Space , 2002 .
[79] G. Weiss,et al. Littlewood-Paley Theory and the Study of Function Spaces , 1991 .
[80] Zuowei Shen,et al. Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.
[81] W. Dahmen,et al. Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .
[82] I. Daubechies,et al. ON THE THERMODYNAMIC FORMALISM FOR MULTIFRACTAL FUNCTIONS , 1994 .
[83] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[84] R. Jia. Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .
[85] Peter G. Casazza,et al. Introduction to Finite Frame Theory , 2013 .
[86] B. Alpert. A class of bases in L 2 for the sparse representations of integral operators , 1993 .
[87] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[88] Bin Han,et al. Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.
[89] Neil A. Dodgson,et al. An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..
[90] I. Daubechies,et al. Two-scale difference equations I: existence and global regularity of solutions , 1991 .
[91] C. Chui,et al. Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .
[92] R. Jia. Bessel sequences in Sobolev spaces , 2006 .
[93] B. Han,et al. Analysis of optimal bivariate symmetric refinable Hermite interpolants , 2007 .
[94] G. Battle. A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .
[95] Bin Han. Symmetric orthogonal filters and wavelets with linear-phase moments , 2011, J. Comput. Appl. Math..
[96] Marcin Bownik. Riesz wavelets and generalized multiresolution analyses , 2003 .
[97] G. Rota,et al. A note on the joint spectral radius , 1960 .
[98] Qingtang Jiang. Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .
[99] M. Skopina,et al. Approximation by frame-like wavelet systems ✩ , 2011 .
[100] Eric P. Braverman,et al. Image inpainting from partial noisy data by directional complex tight framelets , 2017 .
[101] Zhenpeng Zhao,et al. Compactly Supported Tensor Product Complex Tight Framelets with Directionality , 2013, SIAM J. Math. Anal..
[102] Ding-Xuan Zhou. Interpolatory orthogonal multiwavelets and refinable functions , 2002, IEEE Trans. Signal Process..
[103] Ding-Xuan Zhou,et al. Order of linear approximation from shift-invariant spaces , 1995 .
[104] G. Weiss,et al. A characterization of functions that generate wavelet and related expansion , 1997 .
[105] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[106] B. Han,et al. Multiwavelets on the Interval , 2002 .
[107] W. Sweldens. The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .
[108] M. Lai,et al. Method of virtual components for constructing redundant filter banks and wavelet frames , 2007 .
[109] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[110] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[111] I. Selesnick,et al. Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.
[112] M. Unser,et al. Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions , 1999 .
[113] A. Ron,et al. The Sobolev Regularity of Refinable Functions , 2000 .
[114] Deguang Han,et al. Frames for Undergraduates , 2007 .
[115] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[116] Rong-Qing Jia,et al. Approximation properties of multivariate wavelets , 1998, Math. Comput..
[117] P. Lemarié–Rieusset. On the Existence of Compactly Supported Dual Wavelets , 1997 .
[118] Song Li,et al. Symmetric tight wavelet frames with rational coefficients , 2011 .
[119] Bin Han,et al. Multivariate refinable Hermite interpolant , 2003, Math. Comput..
[120] Bin Han,et al. Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks , 2004, SIAM J. Matrix Anal. Appl..
[121] B. Han,et al. Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .
[122] Bin Han,et al. Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness , 2015, Math. Comput..
[123] B. Han. Matrix Extension with Symmetry and Applications to Symmetric Orthonormal Complex M-wavelets , 2009 .
[124] Nicola Guglielmi,et al. Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..
[125] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[126] X. Zhuang. Interpolating refinable function vectors and matrix extension with symmetry , 2010 .
[127] Rong-Qing Jia,et al. Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..
[128] C. Chui,et al. Nonstationary tight wavelet frames, I: Bounded intervals , 2004 .
[129] Georg Zimmermann,et al. Scalar multivariate subdivision schemes and box splines , 2011, Comput. Aided Geom. Des..
[130] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[131] Qingtang Jiang. On the regularity of matrix refinable functions , 1998 .
[132] Ding-Xuan Zhou,et al. Lp solutions of refinement equations , 2001 .
[133] Song Li,et al. Complex Wavelets and Framelets from Pseudo Splines , 2010 .
[134] M. Victor Wickerhauser,et al. Adapted wavelet analysis from theory to software , 1994 .
[135] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[136] Keith F. Taylor,et al. Wavelets with Crystal Symmetry Shifts , 2011 .
[137] Charles A. Micchelli,et al. Regularity of multiwavelets , 1997, Adv. Comput. Math..
[138] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[139] S. L. Lee,et al. Stability and orthonormality of multivariate refinable functions , 1997 .
[140] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[141] A. Ron. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .
[142] Bin Han,et al. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..
[143] S. L. Lee,et al. WAVELETS OF MULTIPLICITY r , 1994 .
[144] Zuowei Shen. Wavelet Frames and Image Restorations , 2011 .
[145] R. Jia,et al. Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .
[146] B. Han. Symmetric multivariate orthogonal refinable functions , 2004 .
[147] D. Donoho,et al. Translation-Invariant De-Noising , 1995 .
[148] R. Serfozo,et al. Performance limitations of parallel simulations , 1998 .
[149] Song Li,et al. Convergence rates of vector cascade algorithms in Lp , 2005, J. Approx. Theory.
[150] Bin Han,et al. The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets , 2009, Math. Comput..
[151] R. Long,et al. Wavelets Generated by Vector Multiresolution Analysis , 1997 .
[152] The Toeplitz theorem and its applications to approximation theory and linear PDEs , 1995 .
[153] Maria Charina,et al. Tight wavelet frames via semi-definite programming , 2010, J. Approx. Theory.
[154] Wayne Lawton,et al. Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..
[155] C. Micchelli,et al. Uniform refinement of curves , 1989 .
[156] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[157] T. Goodman. A Class of Orthogonal Refinable Functions and Wavelets , 2003 .
[158] C. Micchelli,et al. Stationary Subdivision , 1991 .
[159] S. L. Lee,et al. Wavelets in wandering subspaces , 1993 .
[160] Ivan W. Selesnick,et al. Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..
[161] Xiaosheng Zhuang,et al. ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..
[162] M. Ehler,et al. Applied and Computational Harmonic Analysis , 2015 .
[163] Ding-Xuan Zhou,et al. Compactly supported wavelet bases for Sobolev spaces , 2003 .
[164] Rong-Qing Jia,et al. Smoothness of Multiple Refinable Functions and Multiple Wavelets , 1999, SIAM J. Matrix Anal. Appl..
[165] Zhenpeng Zhao,et al. Directional Tensor Product Complex Tight Framelets , 2015 .
[166] L2-convergence of vector cascade algorithm , 1999 .
[167] C. Micchelli,et al. Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .
[168] Bin Dong,et al. Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .
[169] Gilles Deslauriers,et al. Symmetric Iterative Interpolation Processes , 1989 .
[170] D. Hardin,et al. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .
[171] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[172] I. Selesnick,et al. Symmetric wavelet tight frames with two generators , 2004 .
[173] C. Heil,et al. Accuracy of Lattice Translates of Several Multidimensional Refinable Functions , 1998 .
[174] R. Long,et al. Biorthogonal Wavelet Bases on Rd , 1995 .
[175] Richard Baraniuk,et al. The Dual-tree Complex Wavelet Transform , 2007 .
[176] W. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .
[177] M. Unser. Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.
[178] Bin Han,et al. Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils , 2006, Math. Comput..
[179] Wayne Lawton,et al. Applications of complex valued wavelet transforms to subband decomposition , 1993, IEEE Trans. Signal Process..
[180] Chen Di-rong. On linear independence of integer translates of refinable vectors , 1998 .
[181] B. Han. Projectable multivariate refinable functions and biorthogonal wavelets , 2002 .
[182] Bin Han,et al. Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments , 2000, Adv. Comput. Math..
[183] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[184] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[185] C. Chui,et al. On compactly supported spline wavelets and a duality principle , 1992 .
[186] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[187] O. Bratteli,et al. Wavelets through a looking glass , 2002 .
[188] G. Weiss,et al. A First Course on Wavelets , 1996 .
[189] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[190] C. Chui,et al. A dual-chain approach for bottom–up construction of wavelet filters with any integer dilation , 2012 .
[191] Nira Dyn,et al. Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.
[192] Bin Han. Subdivision schemes, biorthogonal wavelets and image compression , 1998 .
[193] C. Chui,et al. Compactly supported tight frames associated with refinable functions , 2000 .
[194] A. Aldroubi. Oblique and Hierarchical Multiwavelet Bases , 1997 .
[195] D. Walnut. An Introduction to Wavelet Analysis , 2004 .
[196] Gerlind Plonka-Hoch,et al. Convergence of Cascade Algorithms in Sobolev Spaces for Perturbed Refinement Masks , 2002, J. Approx. Theory.
[197] Lizhong Peng,et al. Construction for a class of smooth wavelet tight frames , 2003, Science in China Series F: Information Sciences.
[198] Bin Han,et al. Refinable Functions and Cascade Algorithms in Weighted Spaces with Hölder Continuous Masks , 2008, SIAM J. Math. Anal..
[199] B. Han. Symmetric tight framelet filter banks with three high-pass filters☆ , 2014 .
[200] Bin Han,et al. Wavelets with Short Support , 2006, SIAM J. Math. Anal..
[201] Bin Han,et al. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules , 2010, Adv. Comput. Math..
[202] W. Dahmen. Multiscale and Wavelet Methods for Operator Equations , 2003 .
[203] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[204] K. Gröchenig,et al. A new approach to interpolating scaling functions , 1999 .
[205] Bin Han,et al. Algorithm for constructing symmetric dual framelet filter banks , 2014, Math. Comput..
[206] C. Micchelli,et al. On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.
[207] Bin Dong,et al. MRA-based wavelet frames and applications , 2013 .
[208] R. DeVore,et al. The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .
[209] C. Chui,et al. Inequalities of Littlewood-Paley type for frames and wavelets , 1993 .
[210] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[211] S. Mallat. A wavelet tour of signal processing , 1998 .
[212] A. Aldroubi,et al. p-Frames and Shift Invariant Subspaces of Lp , 2001 .
[213] Qingtang Jiang,et al. BALANCED MULTI-WAVELETS IN R , 2005 .
[214] Qiyu Sun,et al. Compactly supported both "m" and "n" refinable distributions , 1999 .
[215] J. Lina,et al. Complex Daubechies Wavelets , 1995 .
[216] A. Cohen,et al. Wavelets and Multiscale Signal Processing , 1995 .
[217] Ding-Xuan Zhou. The $p$-norm joint spectral radius for even integers , 1998 .
[218] Zuowei Shen. Refinable function vectors , 1998 .
[219] M. Ehler. On Multivariate Compactly Supported Bi-Frames , 2007 .
[220] Raymond H. Chan,et al. Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..
[221] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[222] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[223] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[224] I. Daubechies,et al. Regularity of refinable function vectors , 1997 .
[225] A. Ron,et al. Affine systems inL2 (ℝd) II: Dual systems , 1997 .
[226] Truong Q. Nguyen,et al. Wavelets and filter banks , 1996 .
[227] Jianzhong Wang. Stability and linear independence associated with scaling vectors , 1998 .
[228] Bin Han,et al. Riesz multiwavelet bases , 2006 .
[229] Ding-Xuan Zhou,et al. Approximation by Multiple Refinable Functions , 1997, Canadian Journal of Mathematics.
[230] Some applications of projection operators in wavelets , 1995 .
[231] C. Heil,et al. Self-similarity and Multiwavelets in Higher Dimensions , 2004 .
[232] A. Pinkus,et al. Introduction to shift-invariant spaces. Linear independence , 2001 .
[233] D. Hardin,et al. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .
[234] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .
[235] Ding-Xuan Zhou. Multiple Refinable Hermite Interpolants , 2000 .
[236] B. Han. Dual multiwavelet frames with high balancing order and compact fast frame transform , 2009 .
[237] R. E. Edwards,et al. Fourier series : a modern introduction , 1982 .
[238] Jiang,et al. Square root 3 -Subdivision Schemes: Maximal Sum Rule Orders , 2003 .
[239] Bin Han,et al. On linear independence of integer shifts of compactly supported distributions , 2016, J. Approx. Theory.
[240] Mariantonia Cotronei,et al. Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution , 2010, J. Comput. Appl. Math..
[241] Fritz Keinert,et al. Wavelets and Multiwavelets , 2003 .
[242] S. Riemenschneider,et al. Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .
[243] B. Han,et al. Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .
[244] Zuowei Shen,et al. Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .
[245] Charles K. Chui,et al. Compactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments , 2003, Adv. Comput. Math..
[246] P. Wojtaszczyk,et al. A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .
[247] Say Song Goh,et al. Multidimensional Periodic Multiwavelets , 1999 .
[248] R. DeVore,et al. Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .
[249] B. Han. The Projection Method for Multidimensional Framelet and Wavelet Analysis , 2014 .
[250] Qingtang Jiang,et al. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..
[251] R. Jia. Shift-invariant spaces on the real line , 1997 .
[252] Han-Lin Chen. Complex Harmonic Splines, Periodic Quasi-Wavelets , 2000 .
[253] Zhenpeng Zhao,et al. Directional Tensor Product Complex Tight Framelets with Low Redundancy , 2014, ArXiv.
[254] I. Daubechies,et al. A new technique to estimate the regularity of refinable functions , 1996 .
[255] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[256] Say Song Goh,et al. Tight periodic wavelet frames and approximation orders , 2011 .
[257] G. Walter,et al. Wavelets and Other Orthogonal Systems , 2018 .
[258] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[259] B. Han. Properties of Discrete Framelet Transforms , 2013 .
[260] W. Lawton. Tight frames of compactly supported affine wavelets , 1990 .
[261] B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .
[262] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..
[263] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[264] O. Christensen. Frames and Bases: An Introductory Course , 2008 .
[265] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[266] I. Daubechies,et al. How does truncation of the mask affect a refinable function? , 1995 .
[267] Fritz Keinert. Raising Multiwavelet Approximation Order Through Lifting , 2001, SIAM J. Math. Anal..
[268] O. Rioul. Simple regularity criteria for subdivision schemes , 1992 .
[269] Richard Kronland-Martinet,et al. A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .