Wavelet Filter Banks

Wavelet filter banks are the indispensable key part in any discrete wavelet transform and are one of the major topics in the classical theory of wavelets.

[1]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[2]  A. Ron,et al.  On the integer translates of compactly supported function: dual bases and linear projectors , 1990 .

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  C. Heil WHAT IS... a Frame , 2013 .

[5]  G. Strang,et al.  Approximation by translates of refinable functions , 1996 .

[6]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[7]  Ding-Xuan Zhou Existence of multiple refinable distributions. , 1997 .

[8]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[9]  B. Han Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters , 2013 .

[10]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[11]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[12]  L. Baggett,et al.  Construction of Parseval wavelets from redundant filter systems , 2004, math/0405301.

[13]  Bin Han,et al.  Compactly Supported Symmetric C∞ Wavelets with Spectral Approximation Order , 2008, SIAM J. Math. Anal..

[14]  Say Song Goh,et al.  Symmetric and antisymmetric tight wavelet frames , 2006 .

[15]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[16]  G. Strang,et al.  A Fourier Analysis of the Finite Element Variational Method , 2011 .

[17]  Martin Vetterli,et al.  Balanced multiwavelets theory and design , 1998, IEEE Trans. Signal Process..

[18]  Qiyu Sun,et al.  The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces , 2004, Adv. Comput. Math..

[19]  Herbert A. Medina,et al.  Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℝn , 1999 .

[20]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[21]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[22]  B. Han,et al.  Smooth affine shear tight frames with MRA structure , 2013, 1308.6205.

[23]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[24]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[25]  Baobin Li,et al.  Parametrization for balanced multifilter banks , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.

[26]  B. Han On Dual Wavelet Tight Frames , 1997 .

[27]  B. Han Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.

[28]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[29]  A. Petukhov Explicit Construction of Framelets , 2001 .

[30]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[31]  Bin Han,et al.  Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..

[32]  A. Cohen,et al.  An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases , 1993 .

[33]  S. Dubuc,et al.  Convergent Vector and Hermite Subdivision Schemes , 2005 .

[34]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[35]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[36]  Qingtang Jiang,et al.  Distributional Solutions of Nonhomogeneous Discrete and Continuous Refinement Equations , 2000, SIAM J. Math. Anal..

[37]  C. Micchelli,et al.  On vector subdivision , 1998 .

[38]  Bin Han,et al.  Symmetric orthonormal scaling functions and wavelets with dilation factor 4 , 1998, Adv. Comput. Math..

[39]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[40]  B. Han,et al.  Generalized interpolating refinable function vectors , 2009 .

[41]  Jürgen Prestin,et al.  Multivariate periodic wavelet analysis , 2010 .

[42]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[43]  R. A. Zalik Riesz Bases and Multiresolution Analyses , 1999 .

[44]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[45]  Deguang Han,et al.  Frames Associated with Measurable Spaces , 2003, Adv. Comput. Math..

[46]  R. Jia,et al.  Stability and linear independence associated with wavelet decompositions , 1993 .

[47]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[48]  G. Beylkin,et al.  Compactly Supported Wavelets Based on Almost Interpolating and Nearly Linear Phase Filters (Coiflets) , 1999 .

[49]  B. Han Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.

[50]  Bin Han,et al.  Multiwavelet Frames from Refinable Function Vectors , 2003, Adv. Comput. Math..

[51]  Rong-Qing Jia,et al.  Approximation with scaled shift-invariant spaces by means of quasi-projection operators , 2004, J. Approx. Theory.

[52]  D. Hardin,et al.  Biorthogonal Multiwavelets on [−1, 1] , 1999 .

[53]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[54]  R. Jia,et al.  Refinable Functions with Exponential Decay: An Approach via Cascade Algorithms , 2011 .

[55]  Zhenpeng Zhao,et al.  Tensor Product Complex Tight Framelets with Increasing Directionality , 2013, SIAM J. Imaging Sci..

[56]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[57]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[58]  L. Hervé Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .

[59]  Wenchang Sun,et al.  Irregular wavelet/Gabor frames , 2002 .

[60]  Bin Han,et al.  Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001, J. Approx. Theory.

[61]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[62]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[63]  G. Plonka Approximation order provided by refinable function vectors , 1997 .

[64]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[65]  V. Strela,et al.  Construction of multiscaling functions with approximation and symmetry , 1998 .

[66]  Marcin Bownik A Characterization of Affine Dual Frames in L2(Rn) , 2000 .

[67]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[68]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[69]  Charles K. Chui,et al.  Affine frames, quasi-affine frames, and their duals , 1998, Adv. Comput. Math..

[70]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[71]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[72]  I. Daubechies,et al.  Othonormal bases of compactly supported wavelets III: better frequency resolution , 1993 .

[73]  Qingtang Jiang,et al.  Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets , 2002, Numerische Mathematik.

[74]  Song Li,et al.  Biorthogonal multiple wavelets generated by vector refinement equation , 2007 .

[75]  Ding-Xuan Zhou,et al.  Local linear independence of refinable vectors of functions , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[76]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[77]  Yang Wang Two-scale dilation equations and the cascade algorithm , 1995 .

[78]  Dirong Chen,et al.  Stability Implies Convergence of Cascade Algorithms in Sobolev Space , 2002 .

[79]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[80]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[81]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[82]  I. Daubechies,et al.  ON THE THERMODYNAMIC FORMALISM FOR MULTIFRACTAL FUNCTIONS , 1994 .

[83]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[84]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[85]  Peter G. Casazza,et al.  Introduction to Finite Frame Theory , 2013 .

[86]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[87]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[88]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[89]  Neil A. Dodgson,et al.  An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..

[90]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[91]  C. Chui,et al.  Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .

[92]  R. Jia Bessel sequences in Sobolev spaces , 2006 .

[93]  B. Han,et al.  Analysis of optimal bivariate symmetric refinable Hermite interpolants , 2007 .

[94]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[95]  Bin Han Symmetric orthogonal filters and wavelets with linear-phase moments , 2011, J. Comput. Appl. Math..

[96]  Marcin Bownik Riesz wavelets and generalized multiresolution analyses , 2003 .

[97]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[98]  Qingtang Jiang Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .

[99]  M. Skopina,et al.  Approximation by frame-like wavelet systems ✩ , 2011 .

[100]  Eric P. Braverman,et al.  Image inpainting from partial noisy data by directional complex tight framelets , 2017 .

[101]  Zhenpeng Zhao,et al.  Compactly Supported Tensor Product Complex Tight Framelets with Directionality , 2013, SIAM J. Math. Anal..

[102]  Ding-Xuan Zhou Interpolatory orthogonal multiwavelets and refinable functions , 2002, IEEE Trans. Signal Process..

[103]  Ding-Xuan Zhou,et al.  Order of linear approximation from shift-invariant spaces , 1995 .

[104]  G. Weiss,et al.  A characterization of functions that generate wavelet and related expansion , 1997 .

[105]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[106]  B. Han,et al.  Multiwavelets on the Interval , 2002 .

[107]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[108]  M. Lai,et al.  Method of virtual components for constructing redundant filter banks and wavelet frames , 2007 .

[109]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[110]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[111]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[112]  M. Unser,et al.  Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions , 1999 .

[113]  A. Ron,et al.  The Sobolev Regularity of Refinable Functions , 2000 .

[114]  Deguang Han,et al.  Frames for Undergraduates , 2007 .

[115]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[116]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[117]  P. Lemarié–Rieusset On the Existence of Compactly Supported Dual Wavelets , 1997 .

[118]  Song Li,et al.  Symmetric tight wavelet frames with rational coefficients , 2011 .

[119]  Bin Han,et al.  Multivariate refinable Hermite interpolant , 2003, Math. Comput..

[120]  Bin Han,et al.  Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks , 2004, SIAM J. Matrix Anal. Appl..

[121]  B. Han,et al.  Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .

[122]  Bin Han,et al.  Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness , 2015, Math. Comput..

[123]  B. Han Matrix Extension with Symmetry and Applications to Symmetric Orthonormal Complex M-wavelets , 2009 .

[124]  Nicola Guglielmi,et al.  Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..

[125]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[126]  X. Zhuang Interpolating refinable function vectors and matrix extension with symmetry , 2010 .

[127]  Rong-Qing Jia,et al.  Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..

[128]  C. Chui,et al.  Nonstationary tight wavelet frames, I: Bounded intervals , 2004 .

[129]  Georg Zimmermann,et al.  Scalar multivariate subdivision schemes and box splines , 2011, Comput. Aided Geom. Des..

[130]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[131]  Qingtang Jiang On the regularity of matrix refinable functions , 1998 .

[132]  Ding-Xuan Zhou,et al.  Lp solutions of refinement equations , 2001 .

[133]  Song Li,et al.  Complex Wavelets and Framelets from Pseudo Splines , 2010 .

[134]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[135]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[136]  Keith F. Taylor,et al.  Wavelets with Crystal Symmetry Shifts , 2011 .

[137]  Charles A. Micchelli,et al.  Regularity of multiwavelets , 1997, Adv. Comput. Math..

[138]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[139]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[140]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[141]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[142]  Bin Han,et al.  Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..

[143]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[144]  Zuowei Shen Wavelet Frames and Image Restorations , 2011 .

[145]  R. Jia,et al.  Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .

[146]  B. Han Symmetric multivariate orthogonal refinable functions , 2004 .

[147]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[148]  R. Serfozo,et al.  Performance limitations of parallel simulations , 1998 .

[149]  Song Li,et al.  Convergence rates of vector cascade algorithms in Lp , 2005, J. Approx. Theory.

[150]  Bin Han,et al.  The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets , 2009, Math. Comput..

[151]  R. Long,et al.  Wavelets Generated by Vector Multiresolution Analysis , 1997 .

[152]  The Toeplitz theorem and its applications to approximation theory and linear PDEs , 1995 .

[153]  Maria Charina,et al.  Tight wavelet frames via semi-definite programming , 2010, J. Approx. Theory.

[154]  Wayne Lawton,et al.  Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..

[155]  C. Micchelli,et al.  Uniform refinement of curves , 1989 .

[156]  I. Daubechies Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .

[157]  T. Goodman A Class of Orthogonal Refinable Functions and Wavelets , 2003 .

[158]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[159]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[160]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[161]  Xiaosheng Zhuang,et al.  ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..

[162]  M. Ehler,et al.  Applied and Computational Harmonic Analysis , 2015 .

[163]  Ding-Xuan Zhou,et al.  Compactly supported wavelet bases for Sobolev spaces , 2003 .

[164]  Rong-Qing Jia,et al.  Smoothness of Multiple Refinable Functions and Multiple Wavelets , 1999, SIAM J. Matrix Anal. Appl..

[165]  Zhenpeng Zhao,et al.  Directional Tensor Product Complex Tight Framelets , 2015 .

[166]  L2-convergence of vector cascade algorithm , 1999 .

[167]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .

[168]  Bin Dong,et al.  Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .

[169]  Gilles Deslauriers,et al.  Symmetric Iterative Interpolation Processes , 1989 .

[170]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[171]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[172]  I. Selesnick,et al.  Symmetric wavelet tight frames with two generators , 2004 .

[173]  C. Heil,et al.  Accuracy of Lattice Translates of Several Multidimensional Refinable Functions , 1998 .

[174]  R. Long,et al.  Biorthogonal Wavelet Bases on Rd , 1995 .

[175]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[176]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[177]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[178]  Bin Han,et al.  Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils , 2006, Math. Comput..

[179]  Wayne Lawton,et al.  Applications of complex valued wavelet transforms to subband decomposition , 1993, IEEE Trans. Signal Process..

[180]  Chen Di-rong On linear independence of integer translates of refinable vectors , 1998 .

[181]  B. Han Projectable multivariate refinable functions and biorthogonal wavelets , 2002 .

[182]  Bin Han,et al.  Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments , 2000, Adv. Comput. Math..

[183]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[184]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[185]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[186]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[187]  O. Bratteli,et al.  Wavelets through a looking glass , 2002 .

[188]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[189]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[190]  C. Chui,et al.  A dual-chain approach for bottom–up construction of wavelet filters with any integer dilation , 2012 .

[191]  Nira Dyn,et al.  Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.

[192]  Bin Han Subdivision schemes, biorthogonal wavelets and image compression , 1998 .

[193]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[194]  A. Aldroubi Oblique and Hierarchical Multiwavelet Bases , 1997 .

[195]  D. Walnut An Introduction to Wavelet Analysis , 2004 .

[196]  Gerlind Plonka-Hoch,et al.  Convergence of Cascade Algorithms in Sobolev Spaces for Perturbed Refinement Masks , 2002, J. Approx. Theory.

[197]  Lizhong Peng,et al.  Construction for a class of smooth wavelet tight frames , 2003, Science in China Series F: Information Sciences.

[198]  Bin Han,et al.  Refinable Functions and Cascade Algorithms in Weighted Spaces with Hölder Continuous Masks , 2008, SIAM J. Math. Anal..

[199]  B. Han Symmetric tight framelet filter banks with three high-pass filters☆ , 2014 .

[200]  Bin Han,et al.  Wavelets with Short Support , 2006, SIAM J. Math. Anal..

[201]  Bin Han,et al.  Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules , 2010, Adv. Comput. Math..

[202]  W. Dahmen Multiscale and Wavelet Methods for Operator Equations , 2003 .

[203]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[204]  K. Gröchenig,et al.  A new approach to interpolating scaling functions , 1999 .

[205]  Bin Han,et al.  Algorithm for constructing symmetric dual framelet filter banks , 2014, Math. Comput..

[206]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[207]  Bin Dong,et al.  MRA-based wavelet frames and applications , 2013 .

[208]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[209]  C. Chui,et al.  Inequalities of Littlewood-Paley type for frames and wavelets , 1993 .

[210]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[211]  S. Mallat A wavelet tour of signal processing , 1998 .

[212]  A. Aldroubi,et al.  p-Frames and Shift Invariant Subspaces of Lp , 2001 .

[213]  Qingtang Jiang,et al.  BALANCED MULTI-WAVELETS IN R , 2005 .

[214]  Qiyu Sun,et al.  Compactly supported both "m" and "n" refinable distributions , 1999 .

[215]  J. Lina,et al.  Complex Daubechies Wavelets , 1995 .

[216]  A. Cohen,et al.  Wavelets and Multiscale Signal Processing , 1995 .

[217]  Ding-Xuan Zhou The $p$-norm joint spectral radius for even integers , 1998 .

[218]  Zuowei Shen Refinable function vectors , 1998 .

[219]  M. Ehler On Multivariate Compactly Supported Bi-Frames , 2007 .

[220]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..

[221]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[222]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[223]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[224]  I. Daubechies,et al.  Regularity of refinable function vectors , 1997 .

[225]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[226]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[227]  Jianzhong Wang Stability and linear independence associated with scaling vectors , 1998 .

[228]  Bin Han,et al.  Riesz multiwavelet bases , 2006 .

[229]  Ding-Xuan Zhou,et al.  Approximation by Multiple Refinable Functions , 1997, Canadian Journal of Mathematics.

[230]  Some applications of projection operators in wavelets , 1995 .

[231]  C. Heil,et al.  Self-similarity and Multiwavelets in Higher Dimensions , 2004 .

[232]  A. Pinkus,et al.  Introduction to shift-invariant spaces. Linear independence , 2001 .

[233]  D. Hardin,et al.  Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .

[234]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[235]  Ding-Xuan Zhou Multiple Refinable Hermite Interpolants , 2000 .

[236]  B. Han Dual multiwavelet frames with high balancing order and compact fast frame transform , 2009 .

[237]  R. E. Edwards,et al.  Fourier series : a modern introduction , 1982 .

[238]  Jiang,et al.  Square root 3 -Subdivision Schemes: Maximal Sum Rule Orders , 2003 .

[239]  Bin Han,et al.  On linear independence of integer shifts of compactly supported distributions , 2016, J. Approx. Theory.

[240]  Mariantonia Cotronei,et al.  Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution , 2010, J. Comput. Appl. Math..

[241]  Fritz Keinert,et al.  Wavelets and Multiwavelets , 2003 .

[242]  S. Riemenschneider,et al.  Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .

[243]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .

[244]  Zuowei Shen,et al.  Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .

[245]  Charles K. Chui,et al.  Compactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments , 2003, Adv. Comput. Math..

[246]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[247]  Say Song Goh,et al.  Multidimensional Periodic Multiwavelets , 1999 .

[248]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[249]  B. Han The Projection Method for Multidimensional Framelet and Wavelet Analysis , 2014 .

[250]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[251]  R. Jia Shift-invariant spaces on the real line , 1997 .

[252]  Han-Lin Chen Complex Harmonic Splines, Periodic Quasi-Wavelets , 2000 .

[253]  Zhenpeng Zhao,et al.  Directional Tensor Product Complex Tight Framelets with Low Redundancy , 2014, ArXiv.

[254]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[255]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[256]  Say Song Goh,et al.  Tight periodic wavelet frames and approximation orders , 2011 .

[257]  G. Walter,et al.  Wavelets and Other Orthogonal Systems , 2018 .

[258]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[259]  B. Han Properties of Discrete Framelet Transforms , 2013 .

[260]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[261]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[262]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[263]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[264]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[265]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[266]  I. Daubechies,et al.  How does truncation of the mask affect a refinable function? , 1995 .

[267]  Fritz Keinert Raising Multiwavelet Approximation Order Through Lifting , 2001, SIAM J. Math. Anal..

[268]  O. Rioul Simple regularity criteria for subdivision schemes , 1992 .

[269]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .