Role of land cover in Finland’s greenhouse gas emissions
暂无分享,去创建一个
F. Minunno | M. Peltoniemi | P. Kortelainen | M. Forsius | P. Vanhala | N. Karvosenoja | V. Junttila | A. Akujärvi | Ville-Veikko Paunu | P. Ojanen | Torsti Schulz | Jouko Petäjä | M. Savolahti | Maria Holmberg | Torsti Schulz | Juha Grönroos | Annikki Mäkelä
[1] A. Mäkelä,et al. Quantification of forest carbon flux and stock uncertainties under climate change and their use in regionally explicit decision making: Case study in Finland , 2023, Ambio.
[2] A. Mäkelä,et al. Modelling the regional potential for reaching carbon neutrality in Finland: Sustainable forestry, energy use and biodiversity protection , 2023, Ambio.
[3] A. Mäkelä,et al. Effect of forest management choices on carbon sequestration and biodiversity at national scale , 2023, Ambio.
[4] M. Ollikainen,et al. Reforming a pre-existing biodiversity conservation scheme: Promoting climate co-benefits by a carbon payment , 2023, Ambio.
[5] M. Obersteiner,et al. Sustainable pathways towards climate and biodiversity goals in the UK: the importance of managing land-use synergies and trade-offs , 2022, Sustainability Science.
[6] M. Ollikainen,et al. A PES scheme promoting forest biodiversity and carbon sequestration , 2022, Forest Policy and Economics.
[7] J. Heikkinen,et al. Spatial patterns of biomass change across Finland in 2009–2015 , 2022, bioRxiv.
[8] Philip Smith,et al. Actions to halt biodiversity loss generally benefit the climate , 2022, Global change biology.
[9] A. Mäkelä,et al. Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling , 2021, International Journal of Remote Sensing.
[10] A. Bianchi,et al. Review of Greenhouse Gas Emissions from Rewetted Agricultural Soils , 2021, Wetlands.
[11] J. Niemi,et al. Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions? , 2021, Atmospheric Environment.
[12] A. Mäkelä,et al. Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates. , 2021, The Science of the total environment.
[13] K. Minkkinen,et al. Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands , 2020 .
[14] J. Turunen,et al. The influence of anthropogenic land use on Finnish peatland area and carbon stores 1950–2015 , 2020 .
[15] S. Juutinen,et al. Lakes as nitrous oxide sources in the boreal landscape , 2019, Global change biology.
[16] Pete Smith,et al. Contribution of the land sector to a 1.5 °C world , 2019, Nature Climate Change.
[17] A. Mäkelä,et al. Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory , 2019, Forest Ecology and Management.
[18] J. Heikkinen,et al. Large trees have increased greatly in Finland during 1921–2013, but recent observations on old trees tell a different story , 2019, Ecological Indicators.
[19] K. Regina,et al. Mapping of cultivated organic soils for targeting greenhouse gas mitigation , 2019, Carbon Management.
[20] K. Minkkinen,et al. Long-term effect of fertilization on the greenhouse gas exchange of low-productive peatland forests , 2019, Forest Ecology and Management.
[21] K. Regina,et al. Greenhouse Gas Fluxes of Agricultural Soils in Finland , 2018, Energy, Environment, and Sustainability.
[22] T. Laurila,et al. Persistent carbon sink at a boreal drained bog forest , 2018, Biogeosciences.
[23] J. Kukkonen,et al. A High-Resolution National Emission Inventory and Dispersion Modelling—Is Population Density a Sufficient Proxy Variable? , 2018 .
[24] A. Mäkelä,et al. Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region , 2016 .
[25] Maria Holmberg,et al. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. , 2016, The Science of the total environment.
[26] J. Aalto,et al. New gridded daily climatology of Finland: Permutation‐based uncertainty estimates and temporal trends in climate , 2016 .
[27] Grey Giddins,et al. Statistics , 2016, The Journal of hand surgery, European volume.
[28] S. Juutinen,et al. Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen , 2013 .
[29] K. Minkkinen,et al. The current greenhouse gas impact of forestry-drained boreal peatlands , 2013 .
[30] I. Bergström. Carbon gas fluxes from boreal aquatic sediments , 2011 .
[31] S. Carpenter,et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district , 2011 .
[32] T. Blenckner,et al. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering , 2010 .
[33] Timo Penttilä,et al. Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands , 2010 .
[34] J. Liski,et al. Leaf litter decomposition-Estimates of global variability based on Yasso07 model , 2009, 0906.0886.
[35] S. Juutinen,et al. Methane dynamics in different boreal lake types , 2009 .
[36] T. Palosuo,et al. Uncertainty of forest carbon stock changes – implications to the total uncertainty of GHG inventory of Finland , 2007 .
[37] S. Juutinen,et al. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes , 2006 .
[38] J. Liski,et al. Carbon and decomposition model Yasso for forest soils , 2005 .
[39] Jonathan J. Cole,et al. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate , 2004 .
[40] P. Kortelainen,et al. A large carbon pool and small sink in boreal Holocene lake sediments , 2004 .
[41] S. Juutinen,et al. Major implication of the littoral zone for methane release from boreal lakes , 2003 .
[42] Jukka Turunen,et al. Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions , 2002 .
[43] Katri Joensuu,et al. Greenhouse gas emissions in Finland 1990-2014 : National inventory report under the UNFCCC and the Kyoto protocol , 2016 .
[44] D. Shindell,et al. Anthropogenic and Natural Radiative Forcing , 2014 .
[45] Tiina Haaspuro. Luonnikas - laskentatyökalu kunnille luontoperäisten kasvihuonekaasujen nielujen ja lähteiden arviointiin , 2013 .
[46] Paavo Ojanen,et al. Pohjois-Pohjanmaan turvemaiden kasvihuonekaasutaseet , 2013 .
[47] E. Tomppo,et al. The Multi-Source National Forest Inventory of Finland – methods and results 2013 , 2012 .
[48] E. Hepburn. The Role of Regions , 2011 .
[49] Walter J. Radermacher. Eurostat , 2011, International Encyclopedia of Statistical Science.
[50] J. Liski,et al. Leaf litter decomposition — Estimates of global variability based on Yasso 07 model , 2009 .
[51] Niko Karvosenoja,et al. Emission scenario model for regional air pollution , 2008 .
[53] N. Karvosenoja. Emission scenario model for regional air pollution MONOGRAPHS of the Boreal Environment Research , 2008 .
[54] P. Kortelainen,et al. Methane efflux from littoral vegetation stands of southern boreal lakes : An upscaled regional estimate , 2007 .
[55] E. Tuittila,et al. Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands , 2007 .
[56] Risto Uusitalo,et al. Suomen maannostietokanta : Maannoskartta 1:250 000 ja maaperän ominaisuuksia , 2006 .
[57] N. H. Ravindranath,et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .
[58] E. Tomppo. Multi-source national forest inventory of Finland. , 1994 .