Role of land cover in Finland’s greenhouse gas emissions

[1]  A. Mäkelä,et al.  Quantification of forest carbon flux and stock uncertainties under climate change and their use in regionally explicit decision making: Case study in Finland , 2023, Ambio.

[2]  A. Mäkelä,et al.  Modelling the regional potential for reaching carbon neutrality in Finland: Sustainable forestry, energy use and biodiversity protection , 2023, Ambio.

[3]  A. Mäkelä,et al.  Effect of forest management choices on carbon sequestration and biodiversity at national scale , 2023, Ambio.

[4]  M. Ollikainen,et al.  Reforming a pre-existing biodiversity conservation scheme: Promoting climate co-benefits by a carbon payment , 2023, Ambio.

[5]  M. Obersteiner,et al.  Sustainable pathways towards climate and biodiversity goals in the UK: the importance of managing land-use synergies and trade-offs , 2022, Sustainability Science.

[6]  M. Ollikainen,et al.  A PES scheme promoting forest biodiversity and carbon sequestration , 2022, Forest Policy and Economics.

[7]  J. Heikkinen,et al.  Spatial patterns of biomass change across Finland in 2009–2015 , 2022, bioRxiv.

[8]  Philip Smith,et al.  Actions to halt biodiversity loss generally benefit the climate , 2022, Global change biology.

[9]  A. Mäkelä,et al.  Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling , 2021, International Journal of Remote Sensing.

[10]  A. Bianchi,et al.  Review of Greenhouse Gas Emissions from Rewetted Agricultural Soils , 2021, Wetlands.

[11]  J. Niemi,et al.  Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions? , 2021, Atmospheric Environment.

[12]  A. Mäkelä,et al.  Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates. , 2021, The Science of the total environment.

[13]  K. Minkkinen,et al.  Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands , 2020 .

[14]  J. Turunen,et al.  The influence of anthropogenic land use on Finnish peatland area and carbon stores 1950–2015 , 2020 .

[15]  S. Juutinen,et al.  Lakes as nitrous oxide sources in the boreal landscape , 2019, Global change biology.

[16]  Pete Smith,et al.  Contribution of the land sector to a 1.5 °C world , 2019, Nature Climate Change.

[17]  A. Mäkelä,et al.  Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory , 2019, Forest Ecology and Management.

[18]  J. Heikkinen,et al.  Large trees have increased greatly in Finland during 1921–2013, but recent observations on old trees tell a different story , 2019, Ecological Indicators.

[19]  K. Regina,et al.  Mapping of cultivated organic soils for targeting greenhouse gas mitigation , 2019, Carbon Management.

[20]  K. Minkkinen,et al.  Long-term effect of fertilization on the greenhouse gas exchange of low-productive peatland forests , 2019, Forest Ecology and Management.

[21]  K. Regina,et al.  Greenhouse Gas Fluxes of Agricultural Soils in Finland , 2018, Energy, Environment, and Sustainability.

[22]  T. Laurila,et al.  Persistent carbon sink at a boreal drained bog forest , 2018, Biogeosciences.

[23]  J. Kukkonen,et al.  A High-Resolution National Emission Inventory and Dispersion Modelling—Is Population Density a Sufficient Proxy Variable? , 2018 .

[24]  A. Mäkelä,et al.  Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region , 2016 .

[25]  Maria Holmberg,et al.  Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. , 2016, The Science of the total environment.

[26]  J. Aalto,et al.  New gridded daily climatology of Finland: Permutation‐based uncertainty estimates and temporal trends in climate , 2016 .

[27]  Grey Giddins,et al.  Statistics , 2016, The Journal of hand surgery, European volume.

[28]  S. Juutinen,et al.  Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen , 2013 .

[29]  K. Minkkinen,et al.  The current greenhouse gas impact of forestry-drained boreal peatlands , 2013 .

[30]  I. Bergström Carbon gas fluxes from boreal aquatic sediments , 2011 .

[31]  S. Carpenter,et al.  Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district , 2011 .

[32]  T. Blenckner,et al.  CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering , 2010 .

[33]  Timo Penttilä,et al.  Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands , 2010 .

[34]  J. Liski,et al.  Leaf litter decomposition-Estimates of global variability based on Yasso07 model , 2009, 0906.0886.

[35]  S. Juutinen,et al.  Methane dynamics in different boreal lake types , 2009 .

[36]  T. Palosuo,et al.  Uncertainty of forest carbon stock changes – implications to the total uncertainty of GHG inventory of Finland , 2007 .

[37]  S. Juutinen,et al.  Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes , 2006 .

[38]  J. Liski,et al.  Carbon and decomposition model Yasso for forest soils , 2005 .

[39]  Jonathan J. Cole,et al.  Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate , 2004 .

[40]  P. Kortelainen,et al.  A large carbon pool and small sink in boreal Holocene lake sediments , 2004 .

[41]  S. Juutinen,et al.  Major implication of the littoral zone for methane release from boreal lakes , 2003 .

[42]  Jukka Turunen,et al.  Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions , 2002 .

[43]  Katri Joensuu,et al.  Greenhouse gas emissions in Finland 1990-2014 : National inventory report under the UNFCCC and the Kyoto protocol , 2016 .

[44]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[45]  Tiina Haaspuro Luonnikas - laskentatyökalu kunnille luontoperäisten kasvihuonekaasujen nielujen ja lähteiden arviointiin , 2013 .

[46]  Paavo Ojanen,et al.  Pohjois-Pohjanmaan turvemaiden kasvihuonekaasutaseet , 2013 .

[47]  E. Tomppo,et al.  The Multi-Source National Forest Inventory of Finland – methods and results 2013 , 2012 .

[48]  E. Hepburn The Role of Regions , 2011 .

[49]  Walter J. Radermacher Eurostat , 2011, International Encyclopedia of Statistical Science.

[50]  J. Liski,et al.  Leaf litter decomposition — Estimates of global variability based on Yasso 07 model , 2009 .

[51]  Niko Karvosenoja,et al.  Emission scenario model for regional air pollution , 2008 .

[52]  COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS , 2009 .

[53]  N. Karvosenoja Emission scenario model for regional air pollution MONOGRAPHS of the Boreal Environment Research , 2008 .

[54]  P. Kortelainen,et al.  Methane efflux from littoral vegetation stands of southern boreal lakes : An upscaled regional estimate , 2007 .

[55]  E. Tuittila,et al.  Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands , 2007 .

[56]  Risto Uusitalo,et al.  Suomen maannostietokanta : Maannoskartta 1:250 000 ja maaperän ominaisuuksia , 2006 .

[57]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[58]  E. Tomppo Multi-source national forest inventory of Finland. , 1994 .