Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media

We establish general estimates for simple random walk on an arbitrary infinite random graph, assuming suitable bounds on volume and effective resistance for the graph. These are generalizations of the results in Barlow et al. (Commun. Math. Phys. 278:385–431, 2008, Sects. 1, 2) and in particular imply the spectral dimension of the random graph. We will also give an application of the results to random walk on a long-range percolation cluster.

[1]  Martin T. Barlow,et al.  Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.

[2]  D. Croydon,et al.  Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive , 2008, 1210.6193.

[3]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[4]  Harry Kesten,et al.  The incipient infinite cluster in two-dimensional percolation , 1986 .

[5]  Noam Berger,et al.  Transience, Recurrence and Critical Behavior¶for Long-Range Percolation , 2001 .

[6]  Jun Misumi Estimates on the effective resistance in a long-range percolation on ${\mathbb{Z}}^d$ , 2008 .

[7]  M. Aizenman,et al.  Discontinuity of the percolation density in one dimensional 1/|x−y|2 percolation models , 1986 .

[8]  M. Biskup,et al.  Quenched invariance principle for simple random walk on percolation clusters , 2005, math/0503576.

[9]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[10]  M. Barlow Random walks on supercritical percolation clusters , 2003, math/0302004.

[11]  Noam Berger,et al.  The speed of biased random walk on percolation clusters , 2002, math/0211303.

[12]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[13]  V. Sidoravicius,et al.  Quenched invariance principles for walks on clusters of percolation or among random conductances , 2004 .

[14]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[15]  J. Kigami,et al.  Analysis on Fractals , 2001 .

[16]  M. Barlow,et al.  Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphs , 2005 .

[17]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[18]  Noam Berger,et al.  Long-Range Percolation Mixing Time , 2007, Combinatorics, Probability and Computing.

[19]  Andrey L. Piatnitski,et al.  Quenched invariance principles for random walks on percolation clusters , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.