B-spline-like bases for C2 cubics on the Powell-Sabin 12-split

For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a Bezier-like manner. In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for $C^0$-, $C^1$-, and $C^2$-smoothness are derived.

[1]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[2]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[3]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[4]  Larry L. Schumaker,et al.  Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..

[5]  T. Lyche,et al.  Stable Simplex Spline Bases for $$C^3$$C3 Quintics on the Powell–Sabin 12-Split , 2015, 1504.02628.

[6]  C. Micchelli On a numerically efficient method for computing multivariate B-splines , 1979 .

[7]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[8]  Tom Lyche,et al.  Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..

[9]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  P. Oswald,et al.  Hierarchical conforming finite element methods for the biharmonic equation , 1992 .

[12]  Nira Dyn,et al.  A Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element , 1999 .

[13]  Donald E. Knuth Bracket notation for the “coefficient of” operator , 1994 .

[14]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[15]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[16]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[17]  A. Ženíšek,et al.  A general theorem on triangular finite $C^{(m)}$-elements , 1974 .

[18]  Tom Lyche,et al.  A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split , 2014, Comput. Aided Geom. Des..

[19]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[20]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[21]  Oleg Davydov,et al.  Refinable C2 piecewise quintic polynomials on Powell-Sabin-12 triangulations , 2013, J. Comput. Appl. Math..

[22]  Hendrik Speleers,et al.  Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..

[23]  C. Micchelli,et al.  On the Linear Independence of Multivariate B-Splines, I. Triangulations of Simploids , 1982 .