暂无分享,去创建一个
[1] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[2] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[3] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[4] Larry L. Schumaker,et al. Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..
[5] T. Lyche,et al. Stable Simplex Spline Bases for $$C^3$$C3 Quintics on the Powell–Sabin 12-Split , 2015, 1504.02628.
[6] C. Micchelli. On a numerically efficient method for computing multivariate B-splines , 1979 .
[7] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[8] Tom Lyche,et al. Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..
[9] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[10] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[11] P. Oswald,et al. Hierarchical conforming finite element methods for the biharmonic equation , 1992 .
[12] Nira Dyn,et al. A Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element , 1999 .
[13] Donald E. Knuth. Bracket notation for the “coefficient of” operator , 1994 .
[14] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[15] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[16] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[17] A. Ženíšek,et al. A general theorem on triangular finite $C^{(m)}$-elements , 1974 .
[18] Tom Lyche,et al. A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split , 2014, Comput. Aided Geom. Des..
[19] Tom Lyche,et al. A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..
[20] Gershon Elber,et al. Geometric modeling with splines - an introduction , 2001 .
[21] Oleg Davydov,et al. Refinable C2 piecewise quintic polynomials on Powell-Sabin-12 triangulations , 2013, J. Comput. Appl. Math..
[22] Hendrik Speleers,et al. Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..
[23] C. Micchelli,et al. On the Linear Independence of Multivariate B-Splines, I. Triangulations of Simploids , 1982 .