Middle Paleozoic archipelago amalgamation and tectonic transform in the northern West Junggar, NW China: Constraints from magmatism and deformation

[1]  Rongyan Li,et al.  Petrogenesis and Tectonic Implications of Middle Ordovician Ocean Island Basalts from the Chagantaolegai Ophiolitic Mélange in Junggar, NW China , 2020, Acta Geologica Sinica - English Edition.

[2]  R. Seltmann,et al.  Adakite-like granitoids of Songkultau: A relic of juvenile Cambrian arc in Kyrgyz Tien Shan , 2021 .

[3]  Zuopeng Wang,et al.  An Early Cambrian plume-induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks , 2020 .

[4]  W. Xiao,et al.  Evolution of Late Paleozoic Magmatic Arc in the Yili Block, NW China: Implications for Oroclinal Bending in the Western Central Asian Orogenic Belt , 2020, Tectonics.

[5]  B. Han,et al.  Silurian alkaline magmatism in the Saur area, northern West Junggar: Evidence for the Middle Palaeozoic amalgamation of the Kazakhstan Block at the south‐west of the Central Asian Orogenic Belt , 2020, Geological Journal.

[6]  M. Malusà,et al.  Seismotectonics at the Transition Between Opposite‐Dipping Slabs (Western Alpine Region) , 2020, Tectonics.

[7]  B. Windley,et al.  Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids , 2020, Tectonics.

[8]  Lei Zhao,et al.  An Early Ordovician fossil seamount of the Hongguleleng–Balkybey Ocean in the northern West Junggar terrane (NW China) and its implications for the ocean evolution , 2020, Journal of Asian Earth Sciences.

[9]  E. al.,et al.  The role and significance of juvenile sediments in the formation of A-type granites, West Junggar oceanic arc (NW China): Zircon Hf-O isotopic perspectives , 2020, GSA Bulletin.

[10]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[11]  T. Tsujimori,et al.  The Itmurundy Pacific-type orogenic belt in northern Balkhash, central Kazakhstan: Revisited plus first U–Pb age, geochemical and Nd isotope data from igneous rocks , 2020 .

[12]  Rong Ren,et al.  The Ediacaran to Early Palaeozoic evolution of the Junggar–Balkhash Ocean: A synthesis of the ophiolitic mélanges in the southern West Junggar terrane, NW China , 2020, Geological Journal.

[13]  F. Xiong,et al.  Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet , 2020 .

[14]  Lei Zhao,et al.  Early Paleozoic tectonic evolution of the northern West Junggar (NW China): Constraints from Early Cambrian–Middle Silurian felsic plutons of the Chagantaolegai ophiolitic mélange , 2019 .

[15]  Yu-Chao Dong,et al.  Geodynamic Evolution of Flat‐Slab Subduction of Paleo‐Pacific Plate: Constraints From Jurassic Adakitic Lavas in the Hailar Basin, NE China , 2019, Tectonics.

[16]  Lei Zhao,et al.  Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China , 2019, Gondwana Research.

[17]  Zeng-Zhen Wang,et al.  Ediacaran to Paleozoic magmatism in West Junggar Orogenic Belt, NW China, and implications for evolution of Central Asian Orogenic Belt , 2019, Lithos.

[18]  Junlai Liu,et al.  Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China) , 2019, Lithos.

[19]  Wenliang Xu,et al.  Sr–Nd–Hf isotopic compositions of lamprophyres in western Shandong, China: Implications for the nature of the early cretaceous lithospheric mantle beneath the eastern North China Craton , 2019, Lithos.

[20]  R. Seltmann,et al.  Early Carboniferous metamorphism of the Neoproterozoic South Tien Shan-Karakum basement: New geochronological results from Baisun and Kyzylkum, Uzbekistan , 2019, Journal of Asian Earth Sciences.

[21]  Junlai Liu,et al.  Late Ordovician to early Silurian calc-alkaline magmatism in the Xiemisitai Mountains, northern West Junggar: a response to the subduction of the Junggar-Balkhash Ocean , 2019, International Geology Review.

[22]  Lei Zhao,et al.  Evolution of the early Paleozoic Hongguleleng–Balkybey Ocean: Evidence from the Hebukesaier ophiolitic mélange in the northern West Junggar, NW China , 2019, Lithos.

[23]  Junlai Liu,et al.  Timing of the final closure of the Irtysh–Zaysan Ocean: New insights from the earliest stitching pluton in the northern West Junggar, NW China , 2018 .

[24]  C. Yuan,et al.  Alternating Trench Advance and Retreat: Insights From Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt , 2018, Tectonics.

[25]  R. Romer,et al.  Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan , 2018, Gondwana Research.

[26]  A. Şengör,et al.  The Tectonics of the Altaids: Crustal Growth During the Construction of the Continental Lithosphere of Central Asia Between ∼750 and ∼130 Ma Ago , 2018, Annual Review of Earth and Planetary Sciences.

[27]  M. Santosh,et al.  Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites , 2018 .

[28]  C. Yuan,et al.  Petrogenesis and tectonic implications of early Devonian mafic dike–granite association in the northern West Junggar, NW China , 2018 .

[29]  P. Eizenhöfer,et al.  Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean , 2017, Earth-Science Reviews.

[30]  B. Windley,et al.  Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia , 2017, Earth-Science Reviews.

[31]  B. Windley,et al.  Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids , 2017, Journal of Asian Earth Sciences.

[32]  Rong Ren,et al.  Closure Time of the Junggar‐Balkhash Ocean: Constraints From Late Paleozoic Volcano‐Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China , 2017 .

[33]  W. Xiao,et al.  Intra-oceanic arcs of the Paleo-Asian Ocean , 2017 .

[34]  K. Zhou,et al.  Structures and detrital zircon ages of the Devonian–Permian Tarbagatay accretionary complex in west Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB , 2017 .

[35]  I. Safonova Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs , 2017 .

[36]  C. Yuan,et al.  Late Silurian–early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back , 2017 .

[37]  Rong Ren,et al.  Petrogenesis and tectonic implications of the Early Carboniferous to the Late Permian Barleik plutons in the West Junggar (NW China) , 2017 .

[38]  Bo Liu,et al.  The Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean: Further evidence from the Barleik subduction-related metamorphic complex in the West Junggar region, NW China , 2016 .

[39]  Yue-heng Yang,et al.  Middle Paleozoic initial amalgamation and crustal growth in the West Junggar (NW China): Constraints from geochronology, geochemistry and Sr–Nd–Hf–Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains , 2015 .

[40]  W. Xiao,et al.  OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts , 2015 .

[41]  C. Yuan,et al.  A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion , 2015 .

[42]  C. Yuan,et al.  Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: Implications for geodynamic evolution , 2015 .

[43]  Lei Zhao,et al.  Geochronology and geochemistry of the Cambrian (~518 Ma) Chagantaolegai ophiolite in northern West Junggar (NW China): constraints on spatiotemporal characteristics of the Chingiz–Tarbagatai megazone , 2014 .

[44]  W. Xiao,et al.  Petrogenesis and tectonic implications of the middle Silurian volcanic rocks in northern West Junggar, NW China , 2014 .

[45]  Bo Liu,et al.  When did the subduction first initiate in the southern Paleo-Asian Ocean: New constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China , 2014 .

[46]  P. Shen,et al.  An Ordovician intra-oceanic subduction system influenced by ridge subduction in the West Junggar, Northwest China , 2014 .

[47]  M. Zhai,et al.  Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: evidence for late Neoproterozoic continental rifting in the northern Yangtze block , 2014, International Journal of Earth Sciences.

[48]  Yongfeng Zhu,et al.  A New Geological Map of the Western Junggar, North Xinjiang (NW China): Implications for Paleoenvironmental Reconstruction , 2013 .

[49]  Lei Zhao,et al.  Tectonic entities connection between West Junggar (NW China) and East Kazakhstan , 2013 .

[50]  Wang,et al.  Discovery of Early Devonian adakite in West Junggar,Xinjiang:Implications for geotectonics and Cu mineralization , 2013 .

[51]  Wei Lin,et al.  Architecture and evolution of accretionary orogens in the Altaids collage: The early Paleozoic West Junggar (NW China) , 2012, American Journal of Science.

[52]  Ping Shen,et al.  Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach , 2012 .

[53]  C. Yuan,et al.  Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China , 2011 .

[54]  Sheng Zhang,et al.  Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry , 2011 .

[55]  C. Yuan,et al.  Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off , 2010 .

[56]  Chunming Han,et al.  A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens , 2010 .

[57]  Hong Chen,et al.  Biphasic effects of sodium danshensu on vessel function in isolated rat aorta , 2010, Acta Pharmacologica Sinica.

[58]  Zhang Yuan New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection , 2010 .

[59]  G. Gehrels,et al.  Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database , 2009 .

[60]  M. Key,et al.  In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS , 2009 .

[61]  F. Yuan,et al.  Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance , 2008 .

[62]  D. Wyman,et al.  Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites , 2008 .

[63]  N. Volkova,et al.  High-pressure rocks in the serpentinite melange of the Chara zone, Eastern Kazakhstan: Geochemistry, petrology, and age , 2008 .

[64]  B. Hanan,et al.  Petrogenesis of Volcanic Rocks from Saipan and Rota, Mariana Islands, and Implications for the Evolution of Nascent Island Arcs , 2008 .

[65]  P. Kelemen,et al.  Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates , 2008 .

[66]  T. Kusky,et al.  Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton , 2007 .

[67]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[68]  H. Furnes,et al.  Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana , 2007 .

[69]  Mei-Fu Zhou,et al.  Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle , 2007 .

[70]  Brian F. Windley,et al.  Tectonic models for accretion of the Central Asian Orogenic Belt , 2007, Journal of the Geological Society.

[71]  Z. Tian,et al.  Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. , 2007 .

[72]  Zhu Yong The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts.,Xinjiang,NW China , 2006 .

[73]  P. Jian,et al.  Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization , 2006 .

[74]  M. Whitehouse,et al.  Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia , 2005 .

[75]  P. Hoskin Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia , 2005 .

[76]  R. Rudnick,et al.  Recycling lower continental crust in the North China craton , 2004, Nature.

[77]  W. Dickinson EVOLUTION OF THE NORTH AMERICAN CORDILLERA , 2004 .

[78]  B. Jahn The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic , 2004, Geological Society, London, Special Publications.

[79]  T. Pavlis,et al.  Introduction: An overview of ridge-trench interactions in modern and ancient settings , 2003 .

[80]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[81]  P. King,et al.  Are A‐type granites the high‐temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite , 2001 .

[82]  S. Kay,et al.  Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina , 2001 .

[83]  D. Mège,et al.  Giant Dike Swarms: Earth, Venus, and Mars , 2001 .

[84]  R. Armstrong,et al.  Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Paraná–Etendeka CFB , 1998 .

[85]  N. Petford,et al.  Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru , 1996 .

[86]  H. Bellon,et al.  High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines) , 1996 .

[87]  C. Hawkesworth,et al.  Lithospheric to asthenospheric transition in Low-Ti flood basalts from southern Paraná, Brazil , 1996 .

[88]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[89]  H. Bellon,et al.  Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines , 1993 .

[90]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[91]  J. D. de Boer,et al.  The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview , 1992, Journal of the Geological Society.

[92]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[93]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[94]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[95]  S. Hart,et al.  Heterogeneous mantle domains: signatures, genesis and mixing chronologies , 1988 .

[96]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[97]  A. Tindle,et al.  Geochemical characteristics of collision-zone magmatism , 1986, Geological Society, London, Special Publications.

[98]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[99]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[100]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[101]  A. Miyashiro Volcanic rock series in island arcs and active continental margins , 1974 .