The case against climate regulation via oceanic phytoplankton sulphur emissions

[1]  E. Dassau,et al.  Closing the loop , 2012, International journal of clinical practice. Supplement.

[2]  C. O'Dowd,et al.  Production flux of sea spray aerosol , 2011 .

[3]  G. Leeuw,et al.  On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 1: Source fluxes , 2010 .

[4]  G. Mann,et al.  Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide , 2010 .

[5]  L. Russell,et al.  Polysaccharides, Proteins, and Phytoplankton Fragments: Four Chemically Distinct Types of Marine Primary Organic Aerosol Classified by Single Particle Spectromicroscopy , 2010 .

[6]  E. Mårtensson,et al.  In situ laboratory sea spray production during the Marine Aerosol Production 2006 cruise on the northeastern Atlantic Ocean , 2010 .

[7]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[8]  P. Forster,et al.  Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds , 2010 .

[9]  P. Quinn,et al.  Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting , 2009, Proceedings of the National Academy of Sciences.

[10]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[11]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[12]  P. Chuang,et al.  Can aerosol decrease cloud lifetime? , 2009 .

[13]  C. Twohy,et al.  Droplet nuclei in non-precipitating clouds: composition and size matter , 2008 .

[14]  D. Ceburnis,et al.  Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates , 2008 .

[15]  G. Mann,et al.  Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study , 2008 .

[16]  G. Mann,et al.  New Directions: The impact of oceanic iron fertilisation on cloud condensation nuclei☆ , 2008 .

[17]  E. Bigg,et al.  The composition of fragments of bubbles bursting at the ocean surface , 2008 .

[18]  P. Zuidema,et al.  Shortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli , 2008 .

[19]  A. Blyth,et al.  On the composition of Caribbean maritime aerosol particles measured during RICO , 2008 .

[20]  G. Roelofs A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation , 2008 .

[21]  C. O'Dowd,et al.  A combined organic‐inorganic sea‐spray source function , 2008 .

[22]  Raymond Asomani-Boateng,et al.  Closing the Loop , 2007 .

[23]  H. Maring,et al.  Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface , 2007 .

[24]  M. Manizza,et al.  Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming , 2007, Proceedings of the National Academy of Sciences.

[25]  R. Huang,et al.  Decadal Changes of Wind Stress over the Southern Ocean Associated with Antarctic Ozone Depletion , 2007 .

[26]  E. Bigg Sources, nature and influence on climate of marine airborne particles , 2007 .

[27]  R. Wood,et al.  Cancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning , 2007 .

[28]  Jonathan O. Allen,et al.  Mass flux and ionic composition of foam droplets generated from natural and artificial seawaters , 2007 .

[29]  K. Carslaw,et al.  Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere , 2007 .

[30]  Sergio M. Vallina,et al.  Strong Relationship Between DMS and the Solar Radiation Dose over the Global Surface Ocean , 2007, Science.

[31]  M. Kulmala,et al.  Nucleation and Atmospheric Aerosols , 2007 .

[32]  M. Barth,et al.  Aerosol nucleation over oceans and the role of galactic cosmic rays , 2006 .

[33]  Thomas R. Anderson,et al.  Climate sensitivity to ocean dimethylsulphide emissions , 2006 .

[34]  P. Adams,et al.  Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt , 2006 .

[35]  A. Clarke,et al.  An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere , 2006 .

[36]  C. Leck,et al.  Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol , 2008 .

[37]  E. Keith Bigg,et al.  Source and evolution of the marine aerosol—A new perspective , 2005 .

[38]  E. Bigg,et al.  Particulates of the surface microlayer of open water in the central Arctic Ocean in summer , 2004 .

[39]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[40]  D. Siegel,et al.  Light‐driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: Closing the loop , 2004 .

[41]  S. Howell,et al.  Near-Real-Time Measurement of Sea-Salt Aerosol during the SEAS Campaign: Comparison of Emission-Based Sodium Detection with an Aerosol Volatility Technique , 2003 .

[42]  W. Sunda,et al.  An antioxidant function for DMSP and DMS in marine algae , 2002, Nature.

[43]  M. Harvey,et al.  Dimethylsulfide, a limited contributor to new particle formation in the clean marine boundary layer , 2002 .

[44]  Liisa Pirjola,et al.  Can new particle formation occur in the clean marine boundary layer , 2000 .

[45]  J. Fuhrman Marine viruses and their biogeochemical and ecological effects , 1999, Nature.

[46]  R. Benner,et al.  Carbohydrates in phytoplankton and freshly produced dissolved organic matter , 1998 .

[47]  Antony D. Clarke,et al.  Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1 , 1998 .

[48]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[49]  D. Covert,et al.  The number of sea-salt, sulfate, and carbonaceous particles in the marine atmosphere: , 1997 .

[50]  C. N. Hewitt,et al.  Biogenic sulphur emissions and inferred non‐sea‐salt‐sulphate cloud condensation nuclei in and around Antarctica , 1997 .

[51]  G. Ayers,et al.  Atmospheric sulphur and cloud condensation nuclei in marine air in the Southern Hemisphere , 1997 .

[52]  D. Covert,et al.  The number of sea-salt, sulfate, and carbonaceous particles in the marine atmosphere : EM measurements consistent with the ambient size distribution , 1997 .

[53]  C. N. Hewitt,et al.  Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay , 1996 .

[54]  Z. Li,et al.  Aerosol dynamics in the equatorial Pacific marine boundary layer: Microphysics, diurnal cycles and entrainment , 1996 .

[55]  M. Andreae,et al.  Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei , 1995 .

[56]  F. Raes Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer , 1995 .

[57]  P. Hobbs,et al.  Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds , 1994 .

[58]  J. W. Fitzgerald,et al.  Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution , 1994 .

[59]  P. Buseck,et al.  Constituents of a remote pacific marine aerosol: A tem study , 1994 .

[60]  M. H. Smith,et al.  Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind‐speed‐related submicron sea‐salt aerosol production , 1993 .

[61]  M. H. Smith,et al.  Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic , 1993 .

[62]  P. Quinn,et al.  New particle formation in the marine boundary layer , 1992 .

[63]  J. Hedges,et al.  Global biogeochemical cycles: progress and problems , 1992 .

[64]  A. Guenther,et al.  Sulfur emissions to the atmosphere from natural sourees , 1992 .

[65]  J. Gras,et al.  Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air , 1991, Nature.

[66]  M. Wells,et al.  Occurrence of small colloids in sea water , 1991, Nature.

[67]  L. Radke,et al.  Dimethyl sulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean , 1991 .

[68]  M. H. Smith,et al.  Effect on global warming of wind-dependent aerosol generation at the ocean surface , 1990, Nature.

[69]  L. Radke,et al.  Particle production associated with marine clouds , 1990 .

[70]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[71]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[72]  P. Haagenson,et al.  A study of marine aerosols over the Pacific Ocean , 1986 .

[73]  P. D. Houmere,et al.  Dimethyl sulfide in the marine atmosphere , 1985 .

[74]  J. Seinfeld,et al.  Prediction of aerosol concentrations resulting from a burst of nucleation , 1985 .

[75]  Glenn E. Shaw,et al.  Bio-controlled thermostasis involving the sulfur cycle , 1983 .

[76]  M. Andreae Marine aerosol chemistry at Cape Grim, Tasmania, and Townsville, Queensland , 1982 .

[77]  J. Prospero,et al.  Particle size distribution of nitrate and sulfate in the marine atmosphere , 1982 .

[78]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[79]  P. Hobbs Simultaneous airborne measurements of cloud condensation nuclei and sodium‐containing particles over the ocean , 1971 .

[80]  H. B. Howell,et al.  On the Source and Composition of Cloud Nuclei in a Subsident Air Mass over the North Atlantic , 1970 .

[81]  Caleb S. Stone,et al.  Progress and Problems , 1961 .

[82]  D. A. Quarles,et al.  Progress and problems , 1953, Electrical Engineering.