All-Optical Cross-Absorption-Modulation Based Gb/s Switching With Silicon Quantum Dots

In silicon quantum dots (Si-QDs), the sub-bandgap cross-absorption-modulation (XAM) has been preliminarily observed and confirmed as a new kind of wavelength conversion process to enable ultrafast optical switching. By using the Si-QD doped Si-rich SiCx micro-ring resonator waveguide with a quality factor of 1.7 × 104 under an optimized gap spacing of 700 nm away from the bus waveguide, the XAM effect induces a wavelength-converted picosecond all-optical switching between pump and probe signals, which is attributed to a specific free-carrier absorption at probe wavelength caused by the two-photon-absorption induced carriers. The non-degenerate pump-probe analysis also shows a weak Kerr nonlinearity related ultrafast switching response from the changing envelope of the XAM probe pulse at red-shifted wavelength. These observations declare that the nano-scale Si-QDs can provide sufficiently large XAM effect to enable the ultrafast all-optical switching capability for pulsed optical logic applications. To confirm, the Si-QDs doped Si-rich SiCx waveguide modulator-based 1.2 Gb/s all-optical format inversion of a PRZ-OOK data-stream is demonstrated for the first time.

[1]  Gong-Ru Lin,et al.  All-Optical Data Inverter Based on Free-Carrier Absorption Induced Cross-Gain Modulation in Si Quantum Dot Doped SiO$_{\bm x}$ Waveguide , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Lorenzo Pavesi,et al.  Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering , 2012 .

[3]  D. G. Rabus,et al.  Integrated Ring Resonators , 2020, Springer Series in Optical Sciences.

[4]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[5]  G. Petite,et al.  Thermal stability of irradiation-induced point defects in cubic silicon carbide , 2009 .

[6]  Enhanced photon-induced carrier density in silicon-on-insulator via surface recombination suppression for increasing plasma dispersion effect , 2009 .

[7]  Gong-Ru Lin,et al.  Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency. , 2013, Optics express.

[8]  Deren Yang,et al.  Optimum Quantum Yield of the Light Emission from 2 to 10 nm Hydrosilylated Silicon Quantum Dots , 2016 .

[9]  D. Prather,et al.  Mitigation of Si nanocrystal free carrier absorption loss at 1.5 microm in a concentric microdisk structure. , 2010, Optics letters.

[10]  C. Rauscher,et al.  ANALYSIS OF PICOSECOND MID-INFRARED PULSES BY TWO-PHOTON ABSORPTION IN GERMANIUM , 1997 .

[11]  Mark Kerr,et al.  Recombination at the interface between silicon and stoichiometric plasma silicon nitride , 2002 .

[12]  Sebastiano Trusso,et al.  Raman microscopy study of pulsed laser ablation deposited silicon carbide films , 1998 .

[13]  Gong-Ru Lin,et al.  Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes , 2010 .

[14]  V. Gudelis,et al.  Fast and slow carrier recombination transients in highly excited 4H- and 3C-SiC crystals at room temperature , 2010 .

[15]  Elton Marchena,et al.  Free-carrier absorption modulation in silicon nanocrystal slot waveguides. , 2010, Optics letters.

[16]  Gong-Ru Lin,et al.  Enhancing Optical Nonlinearity in a Nonstoichiometric SiN Waveguide for Cross-Wavelength All-Optical Data Processing , 2015 .

[17]  G. Faraci,et al.  Modified Raman confinement model for Si nanocrystals , 2006 .

[18]  Hon Ki Tsang,et al.  Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides. , 2006 .

[19]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[20]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[21]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[22]  Gong-Ru Lin,et al.  Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot , 2012 .

[23]  L. D. Negro,et al.  Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals , 2008 .

[24]  Xide Xie,et al.  Raman shifts in Si nanocrystals , 1996 .

[25]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[26]  Mark L Brongersma,et al.  Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity. , 2008, Nano letters.

[27]  D. Thomson,et al.  Free carrier lifetime modification for silicon waveguide based devices , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[28]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[29]  Mark L Brongersma,et al.  Near-infrared free-carrier absorption in silicon nanocrystals. , 2009, Optics letters.

[30]  Masaya Notomi,et al.  Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities , 2007 .

[31]  Chao Li,et al.  Dual-microring-resonator electro-optic logic switches on a silicon chip , 2008 .

[32]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[33]  Deren Yang,et al.  High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer , 2015, Scientific Reports.

[34]  Gong-Ru Lin,et al.  Finite Silicon Atom Diffusion Induced Size Limitation on Self-Assembled Silicon Quantum Dots in Silicon-Rich Silicon Carbide , 2011 .

[35]  Yu-Lun Chueh,et al.  Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown si-rich SiO2 , 2005 .

[36]  Siegfried Janz,et al.  Compact and low power thermo-optic switch using folded silicon waveguides. , 2009, Optics express.

[37]  Mendoza,et al.  Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires. , 1993, Physical review. B, Condensed matter.

[38]  Michal Lipson,et al.  Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. , 2010, Optics express.

[39]  Hao-Chung Kuo,et al.  Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array , 2007 .

[40]  Gong-Ru Lin,et al.  Transient UV and Visible Luminescent Dynamics of Si-Rich $\hbox{SiO}_{x}$ Metal–Oxide–Semiconductor Light-Emitting Diodes , 2012, IEEE Photonics Journal.

[41]  Gong-Ru Lin,et al.  Si-Rich $\hbox{Si}_{\rm x}\hbox{C}_{1 - {\rm x}}$ Light-Emitting Diodes With Buried Si Quantum Dots , 2012, IEEE Photonics Journal.

[42]  Gong-Ru Lin,et al.  All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide , 2014 .

[43]  Deren Yang,et al.  (Invited) Luminescence Properties of Silicon-Rich Silicon Nitride Films and Light Emitting Devices , 2011 .

[44]  Fabrice Gourbilleau,et al.  Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54μm , 2008 .

[45]  David J. Thomson,et al.  Silicon optical modulators , 2010 .