Is local dominant orientation necessary for the classification of rotation invariant texture?

Extracting local rotation invariant features is a popular method for the classification of rotation invariant texture. To address the issue of local rotation invariance, many algorithms based on anisotropic features were proposed. Usually a dominant orientation is found out first, and then anisotropic feature is extracted by this orientation. To validate whether local dominant orientation is necessary for the classification of rotation invariant texture, in this paper, two isotropic statistical texton based methods are proposed. These two methods are the counterparts of two state-of-the-art anisotropic texton based methods: maximum response 8 (MR8) and gray value image patch. Experimental results on three public databases show that local dominant orientation plays an important role when the training set is less; when training samples are enough, local dominant orientation may not be necessary.

[1]  Shieh-Chung Wei,et al.  Rotation and GrayScale Transform-Invariant Texture Classification Using Spiral Resampling , Subband Decomposition , and Hidden Markov Model , 2004 .

[2]  Du-Ming Tsai,et al.  Automated surface inspection for statistical textures , 2003, Image Vis. Comput..

[3]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[4]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Robert E. Broadhurst Statistical Estimation of Histogram Variation for Texture Classification , 2005 .

[8]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Qiang Ji,et al.  Texture analysis for classification of cervix lesions , 2000, IEEE Transactions on Medical Imaging.

[10]  Andrew Blake,et al.  Shape from texture: Ideal observers and human psychophysics , 1993, Vision Research.

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[13]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[14]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[15]  Fakhry M. Khellah,et al.  Texture Classification Using Dominant Neighborhood Structure , 2011, IEEE Transactions on Image Processing.

[16]  Patrizio Campisi,et al.  Reduced complexity rotation invariant texture classification using a blind deconvolution approach , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[18]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[19]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[20]  Andrew Zisserman,et al.  Unifying statistical texture classification frameworks , 2004, Image Vis. Comput..

[21]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[22]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[23]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[24]  Zheru Chi,et al.  Bark texture feature extraction based on statistical texture analysis , 2004, Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004..

[25]  David A. Clausi,et al.  Gaussian MRF rotation-invariant features for image classification , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Xiaofeng Wang,et al.  Classification of plant leaf images with complicated background , 2008, Appl. Math. Comput..

[27]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  David Zhang,et al.  Palmprint verification based on robust line orientation code , 2007, Pattern Recognit..

[30]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[31]  YAN QIU CHEN,et al.  On texture classification , 1997, Int. J. Syst. Sci..

[32]  Edward H. Adelson,et al.  Texture Classification , 2014, Computer Vision, A Reference Guide.

[33]  Wen-Rong Wu,et al.  Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model , 1996, IEEE Trans. Image Process..

[34]  Wen-Rong Wu,et al.  Correction To "rotation And Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, And Hidden Markov Model" , 1996, IEEE Trans. Image Process..

[35]  David G. Stork,et al.  Pattern Classification , 1973 .

[36]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[38]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[39]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[40]  Michael Spann,et al.  Texture feature performance for image segmentation , 1990, Pattern Recognit..

[41]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Ajay Kumar,et al.  Computer-Vision-Based Fabric Defect Detection: A Survey , 2008, IEEE Transactions on Industrial Electronics.