Receptor binding assay for nitric oxide- and heme-independent activators of soluble guanylate cyclase.

[1]  J. Stasch,et al.  NO‐ and haem‐independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle , 2002, British journal of pharmacology.

[2]  J. Stasch,et al.  Pharmacological actions of a novel NO‐independent guanylyl cyclase stimulator, BAY 41‐8543: in vitro studies , 2002, British journal of pharmacology.

[3]  B. Mayer,et al.  cGMP signalling beyond nitric oxide. , 2001, Trends in pharmacological sciences.

[4]  F. Murad,et al.  YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Stasch,et al.  NO-independent stimulators of soluble guanylate cyclase. , 2001, Bioorganic & medicinal chemistry letters.

[6]  R. Gerzer,et al.  NO-independent regulatory site on soluble guanylate cyclase , 2001, Nature.

[7]  A. Hobbs Soluble guanylate cyclase , 2000 .

[8]  Y. Zhao,et al.  Interaction of soluble guanylate cyclase with YC-1: kinetic and resonance Raman studies. , 2000, Biochemistry.

[9]  G. Schultz,et al.  Sensitizing soluble guanylyl cyclase to become a highly CO‐sensitive enzyme. , 1996, The EMBO journal.

[10]  S. Kuo,et al.  YC‐1 inhibited human platelet aggregation through NO‐independent activation of soluble guanylate cyclase , 1995, British journal of pharmacology.

[11]  C. W. Scott,et al.  A filtration-based assay to quantitate granulocyte-macrophage colony-stimulating factor binding. , 1995, Analytical biochemistry.

[12]  E. Barnard,et al.  Solubilization in high yield of opioid receptors retaining high‐affinity delta, mu and kappa binding sites , 1984, FEBS letters.

[13]  R. Gerzer,et al.  Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide , 1999, Journal of Molecular Medicine.