Study of the pyrolysis process of an hybrid CH3SiO1.5 gel into a SiCO glass

[1]  F. Priolo,et al.  Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition , 2007 .

[2]  A. Quaranta,et al.  Microstructural Evolution of Thermally Treated Low-Dielectric Constant SiOC : H Films Prepared by PECVD , 2006 .

[3]  S. Cho,et al.  Synthesis of heat-resistant mesoporous SiOC ceramic and its hydrogen adsorption , 2006 .

[4]  K. Banerjee,et al.  Scaling analysis of multilevel interconnect temperatures for high-performance ICs , 2005, IEEE Transactions on Electron Devices.

[5]  U. Jayasooriya,et al.  Gel to glass transformation of methyltriethoxysilane : a silicon oxycarbide glass precursor investigated using vibrational spectroscopy , 2005 .

[6]  D. Bahloul-Hourlier,et al.  Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics , 2005 .

[7]  S. Sánchez‐Cortés,et al.  Nanostructure and Micromechanical Properties of Silica/Silicon Oxycarbide Porous Composites , 2005 .

[8]  S. El‐Safty,et al.  Large‐Scale Design of Cubic Ia3d Mesoporous Silica Monoliths with High Order, Controlled Pores, and Hydrothermal Stability , 2005 .

[9]  H. Kleebe,et al.  Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses , 2004 .

[10]  F. Babonneau,et al.  Crystallization behavior of novel silicon boron oxycarbide glasses , 2004 .

[11]  Tracey Scherban,et al.  Compositional effects on electrical and mechanical properties in carbon-doped oxide dielectric films: Application of Fourier-transform infrared spectroscopy , 2004 .

[12]  M. Fukushima,et al.  Raman characterization of oxidation behavior of free carbon in silicon oxycarbide ceramics , 2004 .

[13]  A. Grill,et al.  Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization , 2003 .

[14]  Karen Maex,et al.  Low dielectric constant materials for microelectronics , 2003 .

[15]  J. Sudijono,et al.  Low dielectric constant a-SiOC:H films as copper diffusion barrier , 2003 .

[16]  F. Babonneau,et al.  Solid State NMR and TG/MS Study on the Transformation of Methyl Groups During Pyrolysis of Preceramic Precursors to SiOC Glasses , 2003 .

[17]  G. Sorarù,et al.  Microstructural and mechanical characterization of sol gel-derived Si-O-C glasses , 2002 .

[18]  J. Heitmann,et al.  Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers , 2002 .

[19]  S. Sze,et al.  Trimethylchlorosilane Treatment of Ultralow Dielectric Constant Material after Photoresist Removal Processing , 2002 .

[20]  R. Raj,et al.  Pyrolysis Kinetics for the Conversion of a Polymer into an Amorphous Silicon Oxycarbide Ceramic , 2002 .

[21]  M. S. Hwang,et al.  Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films , 2001 .

[22]  T. Hattori,et al.  Preparation and characterization of low-k silica film incorporated with methylene groups , 2001 .

[23]  F. Babonneau,et al.  Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses , 2001 .

[24]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[25]  H. Nasu,et al.  Preparation of Silicon Oxycarbide Glass Fibers by Sol-Gel Method—Effect of Starting Sol Composition on Tensile Strength of Fibers , 1999 .

[26]  Carlo G. Pantano,et al.  Silicon Oxycarbide Glasses , 1999 .

[27]  P. Mutin Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from Polysiloxane Precursors , 1999 .

[28]  M. Dresselhaus,et al.  ORIGIN OF DISPERSIVE EFFECTS OF THE RAMAN D BAND IN CARBON MATERIALS , 1999 .

[29]  L. Ley,et al.  Origin of the D peak in the Raman spectrum of microcrystalline graphite , 1998 .

[30]  P. Colombo,et al.  Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes: Part I Conversion mechanism , 1997 .

[31]  F. Babonneau,et al.  Structural Characterization and High‐Temperature Behavior of Silicon Oxycarbide Glasses Prepared from Sol‐Gel Precursors Containing Si‐H Bonds , 1995 .

[32]  J. Casado,et al.  Raman spectroscopic characterization of some commercially available carbon black materials , 1995 .

[33]  L. Berger,et al.  Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels , 1995 .

[34]  P. Heimann,et al.  Characterization of the pyrolytic conversion of polysilsesquioxanes to silicon oxycarbides , 1993, Journal of Materials Science.

[35]  G. Zank,et al.  High-temperature chemistry of the conversion of siloxanes to silicon carbide , 1992 .

[36]  N. Mutsukura,et al.  Deposition mechanism of hydrogenated hard‐carbon films in a CH4 rf discharge plasma , 1992 .

[37]  Katsuhisa Tanaka,et al.  Distribution of carbon particles in carbon/SiO2 glass composites made from CH3Si(OC2H5)3 by the sol-gel method☆ , 1990 .

[38]  J. K. Srivastava,et al.  Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy , 1987 .

[39]  Y. Nishina,et al.  Raman study of SiC fibres made from polycarbosilane , 1987 .

[40]  John A. Woollam,et al.  Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films , 1984 .

[41]  M. Nakamizo,et al.  Raman spectra of the oxidized and polished surfaces of carbon , 1984 .

[42]  G. Socrates,et al.  Infrared Characteristic Group Frequencies , 1980 .

[43]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .