On the Stability of Linear Discrete-Time Fuzzy Systems

In this paper the linear and stationary Discrete-time systems with state variables and dynamic coecients represented by fuzzy numbers are studied, providing some stability criteria, and characterizing the bounds of the set of solutions in the case of positive systems.

[1]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[2]  Michele Fedrizzi,et al.  The Dynamics of Consensus in Group Decision Making: Investigating the Pairwise Interactions between Fuzzy Preferences , 2010, Preferences and Decisions.

[3]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[4]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[5]  R. Varga Geršgorin And His Circles , 2004 .

[6]  Phil Diamond,et al.  Regularity of solution sets for differential inclusions quasi-concave in a parameter , 2000, Appl. Math. Lett..

[7]  Benjamin Kuipers,et al.  Numerical Behavior Envelopes for Qualitative Models , 1993, AAAI.

[8]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .

[9]  Stefano Panzieri,et al.  Fuzzy Consensus and Synchronization: Theory and Application to Critical Infrastructure Protection Problems , 2011, ArXiv.

[10]  V. Lakshmikantham,et al.  Theory of Fuzzy Differential Equations and Inclusions , 2003 .

[11]  D. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theory , 1991 .

[12]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[13]  Michael Hanss,et al.  Applied Fuzzy Arithmetic: An Introduction with Engineering Applications , 2004 .

[14]  Andrew R. Teel,et al.  Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..

[15]  Marilena Vendittelli,et al.  Fuzzy maps: A new tool for mobile robot perception and planning , 1997, J. Field Robotics.

[16]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[17]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[18]  D. S. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theorem , 1990, 29th IEEE Conference on Decision and Control.

[19]  Eyke Hüllermeier,et al.  An Approach to Modelling and Simulation of Uncertain Dynamical Systems , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[20]  Jan Jantzen,et al.  Foundations of fuzzy control , 2007 .

[21]  M. Balazinski,et al.  Fuzzy Parking Manoeuvres of Wheeled Mobile Robots , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[22]  D. W. Pearson A property of linear fuzzy differential equations , 1997 .

[23]  V. Lakshmikantham,et al.  On Massera Type Converse Theorem in Terms of Two Different Measures (0) , 1975 .

[24]  Dug Hun Hong,et al.  CONVEXITY AND SEMICONTINUITY OF FUZZY MAPPINGS USING THE SUPPORT FUNCTION , 2010 .

[25]  S. Seikkala On the fuzzy initial value problem , 1987 .

[26]  D. Shim,et al.  Equivalence between positive real and norm-bounded uncertainty , 1996, IEEE Trans. Autom. Control..

[27]  Andrew R. Teel,et al.  On the Robustness of KL-stability for Difference Inclusions: Smooth Discrete-Time Lyapunov Functions , 2005, SIAM J. Control. Optim..

[28]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[29]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .